Abstract
Denmark constitutes a low-enthalpy geothermal area, and currently geothermal production takes places from two sandstone-rich formations: the Bunter Sandstone and the Gassum formations. These formations form major geothermal reservoirs in the Danish area, but exploration is associated with high geological uncertainty and information about reservoir permeability is difficult to obtain. Prediction of porosity and permeability prior to drilling is therefore essential in order to reduce risks. Geologically these two formations represent excellent examples of sandstone diversity, since they were deposited in a variety of environments during arid and humid climatic conditions. The study is based on geological and petrophysical data acquired in deep wells onshore Denmark, including conventional core analysis data and well-logs. A method for assessing and predicting the average porosity and permeability of geothermal prospects within the Danish area is presented. Firstly, a porosity-depth trend is established in order to predict porosity. Subsequently, in order to predict permeability, a porosity-permeability relation is established and then refined in steps. Both one basin-wide and one local permeability model are generated. Two porosity-depth models are established. It is shown that the average permeability of a geothermal prospect can be modelled (predicted) using a local permeability model, i.e. a model valid for a geological province including the prospect. The local permeability model is related to a general permeability model through a constant, and the general model thus acts as a template. The applied averaging technique reduces the scatter that is normally seen in a porosity-permeability plot including all raw core analysis measurements and thus narrows the uncertainty band attached to the average permeability estimate for a reservoir layer. A "best practice" technique for predicting average porosity and permeability of geothermal prospects on the basis of core analysis data and well-logs is suggested. The porosity is primarily related to depth, whereas the permeability also depends on porosity, mineralogy and grain size, which are controlled by the depositional environment. Our results indicate that porosity and permeability assessments should be based on averaged data and not raw conventional core analysis data. The uncertainty range of permeability values is significantly lower, when average values are used.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




