Research Article
Open Access
Clutton-Brock J. A natural history of domesticated mammals. Cambridge: Cambridge University Press; 1999.
Naderi S, Rezaei HR, Pompanon F, Blum MGB, Negrini R, Naghash HR, et al. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proc Natl Acad Sci U S A. 2008;105:17659-64.
FAO. Status and trends of animal genetic resources-2012. Commission on genetic resources for food and agriculture. 15-19 April 2013: Rome. http://www.fao.org/docrep/meeting/027/mg046e.pdf. 15 Jan 2015 Accessed
Usai MG, Casu S, Molle G, Decandia M, Ligios S, Carta A. Using cluster analysis to characterize the goat farming system in Sardinia. Livest Sci. 2006;104:63-76.
Iamartino D, Bruzzone A, Lanza A, Blasi M, Pilla F. Genetic diversity of Southern Italian goat population assessed by microsatellite markers. Small Ruminant Res. 2005;57:249-55.
Sechi T, Usai MG, Miari S, Mura L, Casu S, Carta A. Identifying native animals in crossbred populations: the case of the Sardinian goat population. Anim Genet. 2007;38:614-20.
Ajmone-Marsan P, Negrini R, Crepaldi P, Milanesi E, Gorni C, Valentini A, et al. Assessing genetic diversity in Italian goat populations using AFLP® markers. Anim Genet. 2001;32:281-8.
Cañón J, García D, García-Atance MA, Obexer-Ruff G, Lenstra JA, Ajmone-Marsan P, et al. Geographical partitioning of goat diversity in Europe and the Middle East. Anim Genet. 2006;37:327-34.
Pariset L, Cappuccio I, Ajmone-Marsan P, Dunner S, Luikart G, England PR, et al. Assessment of population structure by single nucleotide polymorphisms (SNPs) in goat breeds. J Chromatogr B. 2006;833:117-20.
Pariset L, Joost S, Ajmone-Marsan P, Valentini A, Econogene Consortium. Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean. BMC Genet. 2009;10:7.
Pariset L, Cuteri A, Ligda C, Ajmone-Marsan P, Valentini A, Econogene Consortium. Geographical patterning of sixteen goat breeds from Italy, Albania and Greece assessed by single nucleotide polymorphisms. BMC Ecol. 2009;9:20.
Ajmone-Marsan P, Colli L, Han JL, Achilli A, Lancioni H, Joost S, et al. The characterization of goat genetic diversity: Towards a genomic approach. Small Ruminant Res. 2014;121:58-72.
Amills M, Ramírez O, Tomàs A, Badaoui B, Marmi J, Acosta J, et al. Mitochondrial DNA diversity and origins of South and Central American goats. Anim Genet. 2009;40:315-22.
Luikart G, Gielly L, Excoffier L, Vigne JD, Bouvet J, Taberlet P. Multiple maternal origins and weak phylogeographic structure in domestic goat. Proc Natl Acad Sci U S A. 2001;98:5927-32.
ovine HapMap Consortium, Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009;324:528-32.
Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, et al. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012;10, e1001258.
Muir WM, Wong GK, Zhang Y, Wang J, Groenen MA, Crooijmans RP, et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc Natl Acad Sci U S A. 2008;105:17312-7.
Tosser-Klopp G, Bardou P, Bouchez O, Cabau C, Crooijmans R, Dong Y, et al. Design and characterization of a 52 K SNP chip for goats. PLoS One. 2014;9, e86227.
FAO. World watch list for domestic animal diversity. Rome: FAO; 2000.
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294-6.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559-75.
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564-7.
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358-70.
Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution. 1965;19:395-420.
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479-91.
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254-67.
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655-64.
Negrini R, D'Andrea M, Crepaldi P, Colli L, Nicoloso L, Guastella AM, et al. Effect of microsatellite outliers on the genetic structure of eight Italian goat breeds. Small Ruminant Res. 2012;103:99-107.
Negrini R, Nijman IJ, Milanesi E, Moazami-Goudarzi K, Williams JL, Erhardt G, et al. Differentiation of European cattle by AFLP fingerprinting. Anim Genet. 2007;38:60-6.
Ciani E, Crepaldi P, Nicoloso L, Lasagna E, Sarti FM, Moioli B, et al. Genome-wide analysis of Italian sheep diversity reveals a strong geographic pattern and cryptic relationships between breeds. Anim Genet. 2014;45:256-66.
Colli L, Joost S, Negrini R, Nicoloso L, Crepaldi P, Ajmone-Marsan P, et al. Assessing the spatial dependence of adaptive loci in 43 European and Western Asian goat breeds using AFLP markers. PLoS One. 2014;9, e86668.
Kijas JW, Ortiz JS, McCulloch R, James A, Brice B, Swain B, et al. Genetic diversity and investigation of polledness in divergent goat populations using 52 088 SNPs. Anim Genet. 2013;44:325-35.
Bigi D, Zanon A. Atlante delle razze autoctone: bovini, equini, ovicaprini, suini allevati in Italia. Milano: Edagricole; 2008.
Thomas MG, Barnes I, Weale ME, Jones AL, Forster P, Bradman N, et al. New genetic evidence supports isolation and drift in the Ladin communities of the South Tyrolean Alps but not an ancient origin in the Middle East. Eur J Hum Genet. 2008;16:124-34.
Crepaldi P, Negrini R, Milanesi E, Gorni C, Cicogna M, Ajmone-Marsan P. Diversity in five goat populations of the Lombardy Alps: comparison of estimates obtained from morphometric traits and molecular markers. J Anim Breed Genet. 2001;118:173-80.
FAO. The state of the world's animal genetic resources for food and agriculture. Edited by B Rischkowsky and D Pilling. Rome. 2007. http://www.fao.org/docrep/010/a1250e/a1250e00.htm. 15 Jan 2015 Accessed
Horden P, Purcell N. The Corrupting Sea: a study of Mediterranean history. London: Blackwell Publishers; 2000.
Meuwissen TH, Odegard J, Andersen-Ranberg I, Grindflek E. On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding. Genet Sel Evol. 2014;46:49.
Porter V. Goats of the World. Ipswich: Farming Press; 1996.
Gall C. Goat breeds of the world. Weikersheim: Margraf Verlag; 1996.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright BioMed Central 2015
Abstract
Background
Among the European countries, Italy counts the largest number of local goat breeds. Thanks to the recent availability of a medium-density SNP (single nucleotide polymorphism) chip for goat, the genetic diversity of Italian goat populations was characterized by genotyping samples from 14 Italian goat breeds that originate from different geographical areas with more than 50 000 SNPs evenly distributed on the genome.
Results
Analysis of the genotyping data revealed high levels of genetic polymorphism and an underlying North-south geographic pattern of genetic diversity that was highlighted by both the first dimension of the multi-dimensional scaling plot and the Neighbour network reconstruction. We observed a moderate and weak population structure in Northern and Central-Southern breeds, respectively, with pairwise FST values between breeds ranging from 0.013 to 0.164 and 7.49 % of the total variance assigned to the between-breed level. Only 2.11 % of the variance explained the clustering of breeds into geographical groups (Northern, Central and Southern Italy and Islands).
Conclusions
Our results indicate that the present-day genetic diversity of Italian goat populations was shaped by the combined effects of drift, presence or lack of gene flow and, to some extent, by the consequences of traditional management systems and recent demographic history. Our findings may constitute the starting point for the development of marker-assisted approaches, to better address future breeding and management policies in a species that is particularly relevant for the medium- and long-term sustainability of marginal regions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer