Конспект

Let E be a real q -uniformly smooth Banach space with constant [subscript]dq[/subscript] , q≥2 . Let T:E[arrow right]E and G:E[arrow right]E be a nonexpansive map and an η -strongly accretive map which is also κ -Lipschitzian, respectively. Let {[subscript]λn[/subscript] } be a real sequence in [0,1] that satisfies the following condition: C1:lim[subscript]λn[/subscript] =0 and ∑[subscript]λn[/subscript] =∞ . For δ∈(0,[superscript](qη/[subscript]dq[/subscript] [superscript]kq[/superscript] )1/(q-1)[/superscript] ) and σ∈(0,1) , define a sequence {[subscript]xn[/subscript] } iteratively in E by [subscript]x0[/subscript] ∈E , [subscript]xn+1[/subscript] =[superscript]T[subscript]λn+1[/subscript] [/superscript] [subscript]xn[/subscript] =(1-σ)[subscript]xn[/subscript] +σ[T[subscript]xn[/subscript] -δ[subscript]λn+1[/subscript] G(T[subscript]xn[/subscript] )] , n≥0 . Then, {[subscript]xn[/subscript] } converges strongly to the unique solution [superscript]x*[/superscript] of the variational inequality problem VI(G,K) (search for [superscript]x*[/superscript] ∈K such that ...G[superscript]x*[/superscript] ,[subscript]jq[/subscript] (y-[superscript]x*[/superscript] )...≥0 for all y∈K) , where K:=Fix(T)={x∈E:Tx=x}≠∅ . A convergence theorem related to finite family of nonexpansive maps is also proved.

Сведения

Название
Approximation of Fixed Points of Nonexpansive Mappings and Solutions of Variational Inequalities
Автор
Chidume, C E; Chidume, C O; Bashir, Ali
Год публикации
2008
Дата публикации
2008
Издательство
Springer Nature B.V.
ISSN
10255834
e-ISSN
1029242X
Тип источника
Scholarly Journal
Язык публикации
English
ИД документа ProQuest
857176284
Авторское право
Copyright © 2008 C. E. Chidume et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.