Content area

Abstract

Fungal polyketides have huge structural diversity from simple aromatics to highly modified complex reduced-type compounds. Despite such diversty, single modular iterative type I polyketide synthases (iPKSs) are responsible for their carbon skeleton construction. Using heterologous expression systems, we have studied on ATX, a 6-methylsalicylic acid synthase from Aspergillus terreus as a model iPKS. In addition, iPKS functions involved in fungal spore pigment biosynthesis were analyzed together with polyketide-shortening enzymes that convert products of PKSs to shorter ketides by hydrolytic C-C bond cleavage. In our studies on reducing-type iPKSs, we cloned and expressed PKS genes, pksN, pksF, pksK and sol1 from Alternaria solani. The sol gene cluster was found to be involved in solanapyrone biosynthesis and sol5 was identified to encode solanapyrone synthase, a Diels-Alder enzyme. Our fungal PKS studies were further extended to identify the function of PKS-nonribosomal peptide synthase involved in cyclopiazonic acid biosynthesis.

Details

Title
Functional analysis of fungal polyketide biosynthesis genes
Author
Fujii, Isao
Pages
207-218
Publication year
2010
Publication date
May 2010
Publisher
Nature Publishing Group
ISSN
00218820
e-ISSN
18811469
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1787786924
Copyright
Copyright Nature Publishing Group May 2010