Full text

Turn on search term navigation

Copyright © 2016 Junjia Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The problem of course control for underactuated surface ship is addressed in this paper. Firstly, neural networks are adopted to determine the parameters of the unknown part of ideal virtual backstepping control, even the weight values of neural network are updated by adaptive technique. Then uniform stability for the convergence of course tracking errors has been proven through Lyapunov stability theory. Finally, simulation experiments are carried out to illustrate the effectiveness of proposed control method.

Details

Title
Course Control of Underactuated Ship Based on Nonlinear Robust Neural Network Backstepping Method
Author
Yuan, Junjia; Meng, Hao; Zhu, Qidan; Zhou, Jiajia
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1792348206
Copyright
Copyright © 2016 Junjia Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.