Full Text

Turn on search term navigation

Copyright Nature Publishing Group Jun 2016

Abstract

TRPV4 ion channels represent osmo-mechano-TRP channels with pleiotropic function and wide-spread expression. One of the critical functions of TRPV4 in this spectrum is its involvement in pain and inflammation. However, few small-molecule inhibitors of TRPV4 are available. Here we developed TRPV4-inhibitory molecules based on modifications of a known TRPV4-selective tool-compound, GSK205. We not only increased TRPV4-inhibitory potency, but surprisingly also generated two compounds that potently co-inhibit TRPA1, known to function as chemical sensor of noxious and irritant signaling. We demonstrate TRPV4 inhibition by these compounds in primary cells with known TRPV4 expression - articular chondrocytes and astrocytes. Importantly, our novel compounds attenuate pain behavior in a trigeminal irritant pain model that is known to rely on TRPV4 and TRPA1. Furthermore, our novel dual-channel blocker inhibited inflammation and pain-associated behavior in a model of acute pancreatitis - known to also rely on TRPV4 and TRPA1. Our results illustrate proof of a novel concept inherent in our prototype compounds of a drug that targets two functionally-related TRP channels, and thus can be used to combat isoforms of pain and inflammation in-vivo that involve more than one TRP channel. This approach could provide a novel paradigm for treating other relevant health conditions.

Details

Title
Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain
Author
Kanju, Patrick; Chen, Yong; Lee, Whasil; Yeo, Michele; Lee, Suk Hee; Romac, Joelle; Shahid, Rafiq; Fan, Ping; Gooden, David M; Simon, Sidney A; Spasojevic, Ivan; Mook, Robert A; Liddle, Rodger A; Guilak, Farshid; Liedtke, Wolfgang B
Pages
26894
Publication year
2016
Publication date
Jun 2016
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1793333788
Copyright
Copyright Nature Publishing Group Jun 2016