Full Text

Turn on search term navigation

Copyright Nature Publishing Group Jun 2016

Abstract

The malaria parasite Plasmodium falciparum relies on efficient protein translation. An essential component of translation is the tryptophanyl-tRNA synthetase (TrpRS) that charges tRNAtrp . Here we characterise two isoforms of TrpRS in Plasmodium; one eukaryotic type localises to the cytosol and a bacterial type localises to the remnant plastid (apicoplast). We show that the apicoplast TrpRS aminoacylates bacterial tRNAtrp while the cytosolic TrpRS charges eukaryotic tRNAtrp . An inhibitor of bacterial TrpRSs, indolmycin, specifically inhibits aminoacylation by the apicoplast TrpRS in vitro, and inhibits ex vivo Plasmodium parasite growth, killing parasites with a delayed death effect characteristic of apicoplast inhibitors. Indolmycin treatment ablates apicoplast inheritance and is rescuable by addition of the apicoplast metabolite isopentenyl pyrophosphate (IPP). These data establish that inhibition of an apicoplast housekeeping enzyme leads to loss of the apicoplast and this is sufficient for delayed death. Apicoplast TrpRS is essential for protein translation and is a promising, specific antimalarial target.

Details

Title
Selective inhibition of apicoplast tryptophanyl-tRNA synthetase causes delayed death in Plasmodium falciparum
Author
Pasaje, Charisse Flerida A; Cheung, Vanessa; Kennedy, Kit; Lim, Erin E; Baell, Jonathan B; Griffin, Michael D W; Ralph, Stuart A
Pages
27531
Publication year
2016
Publication date
Jun 2016
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1795534932
Copyright
Copyright Nature Publishing Group Jun 2016