Full Text

Turn on search term navigation

© 2016 Kesavan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Apnea of Prematurity (AOP) is common, affecting the majority of infants born at <34 weeks gestational age. Apnea and periodic breathing are accompanied by intermittent hypoxia (IH). Animal and human studies demonstrate that IH exposure contributes to multiple pathologies, including retinopathy of prematurity (ROP), injury to sympathetic ganglia regulating cardiovascular action, impaired pancreatic islet cell and bone development, cerebellar injury, and neurodevelopmental disabilities. Current standard of care for AOP/IH includes prone positioning, positive pressure ventilation, and methylxanthine therapy; these interventions are inadequate, and not optimal for early development.

Objective

The objective is to support breathing in premature infants by using a simple, non-invasive vibratory device placed over limb proprioceptor fibers, an intervention using the principle that limb movements trigger reflexive facilitation of breathing.

Methods

Premature infants (23–34 wks gestational age), with clinical evidence of AOP/IH episodes were enrolled 1 week after birth. Caffeine treatment was not a reason for exclusion. Small vibration devices were placed on one hand and one foot and activated in 6 hour ON/OFF sequences for a total of 24 hours. Heart rate, respiratory rate, oxygen saturation (SpO2), and breathing pauses were continuously collected.

Results

Fewer respiratory pauses occurred during vibration periods, relative to baseline (p<0.005). Significantly fewer SpO2 declines occurred with vibration (p<0.05), relative to control periods. Significantly fewer bradycardic events occurred during vibration periods, relative to no vibration periods (p<0.05).

Conclusions

In premature neonates, limb proprioceptive stimulation, simulating limb movement, reduces breathing pauses and IH episodes, and lowers the number of bradycardic events that accompany aberrant breathing episodes. This low-cost neuromodulatory procedure has the potential to provide a non-invasive intervention to reduce apnea, bradycardia and intermittent hypoxia in premature neonates.

Trial Registration

ClinicalTrials.gov NCT02641249

Details

Title
Neuromodulation of Limb Proprioceptive Afferents Decreases Apnea of Prematurity and Accompanying Intermittent Hypoxia and Bradycardia
Author
Kesavan, Kalpashri; Frank, Paul; Cordero, Daniella M; Benharash, Peyman; Harper, Ronald M
First page
e0157349
Section
Research Article
Publication year
2016
Publication date
Jun 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1797240695
Copyright
© 2016 Kesavan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.