Full Text

Turn on search term navigation

Copyright © 2016 Tian Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this study, three schemes [Yonsei University (YSU), Mellor-Yamada-Janjic (MYJ), and Bougeault-Lacarrère (Boulac)] were employed in the Weather Research and Forecasting/Chemistry (WRF-Chem) model to simulate the severe haze that occurred in February 2014 in the Jing-Jin-Ji region and its surroundings. The PM2.5 concentration simulated using the three schemes, together with the meteorological factors closely related to PM2.5 (wind speed, local vertical diffusivity, and PBL height), was evaluated through comparison with observations. The results indicated that the eastern plain cities produced better simulation results than the western cities, and the cities under the eastern root of Taihang Mountain produced the worst results in simulating high PM2.5 concentration in haze. All three schemes simulated very similar variation trends of the surface PM2.5 concentration compared with observations. The diurnal variations of simulated surface PM2.5 were not as reasonable as their reflection of daily averaged variation. The simulated concentrations of surface PM2.5 using the YSU, MYJ, and Boulac schemes all showed large negative errors during daytime in polluted days due to their inefficient descriptions of local atmospheric stability or diffusion processes in haze. The lower ability of PBL schemes in distinguishing the diffusion between haze and clean days in the complex topography areas in China is an important problem for PM2.5 forecasting, which is worthy of being studied in detail.

Details

Title
The Impacts of Different PBL Schemes on the Simulation of PM2.5 during Severe Haze Episodes in the Jing-Jin-Ji Region and Its Surroundings in China
Author
Li, Tian; Wang, Hong; Zhao, Tianliang; Xue, Min; Wang, Yaqiang; Che, Huizheng; Jiang, Chao
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
16879309
e-ISSN
16879317
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1797846061
Copyright
Copyright © 2016 Tian Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.