Full Text

Turn on search term navigation

Copyright Nature Publishing Group Jun 2016

Abstract

Nitrogen fixation by cyanobacteria supplies critical bioavailable nitrogen to marine ecosystems worldwide; however, field and lab data have demonstrated it to be limited by iron, phosphorus and/or CO2 . To address unknown future interactions among these factors, we grew the nitrogen-fixing cyanobacterium Trichodesmium for 1 year under Fe/P co-limitation following 7 years of both low and high CO2 selection. Fe/P co-limited cell lines demonstrated a complex cellular response including increased growth rates, broad proteome restructuring and cell size reductions relative to steady-state growth limited by either Fe or P alone. Fe/P co-limitation increased abundance of a protein containing a conserved domain previously implicated in cell size regulation, suggesting a similar role in Trichodesmium. Increased CO2 further induced nutrient-limited proteome shifts in widespread core metabolisms. Our results thus suggest that N2 -fixing microbes may be significantly impacted by interactions between elevated CO2 and nutrient limitation, with broad implications for global biogeochemical cycles in the future ocean.

Details

Title
Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean
Author
Walworth, Nathan G; Fu, Fei-xue; Webb, Eric A; Saito, Mak A; Moran, Dawn; Mcllvin, Matthew R; Lee, Michael D; Hutchins, David A
Pages
12081
Publication year
2016
Publication date
Jun 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1799575271
Copyright
Copyright Nature Publishing Group Jun 2016