It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Phthalonitriles are key precursors of phthalocyanines. Self-quenching dimeric phthalocyanines likely to be cleaved into monomeric species are of potential interest for tumour-site activated photosensitisers. Disulfide linkers can be specifically cleaved in tumoral tissue do to their reductive nature. Hence, a disulfide-linked phthalonitrile was designed to serve as further precursor of specifically tumour-activatable phthalocyanine-based photosensitising systems. Bisphthalonitrile with a disulfide-based linker and its dimethylene analogue were comparatively analyzed on a spectroscopic point of view as well as with DFT calculations. A thorough crystallographic analysis of the disulfide-linked derivative was conducted.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer