Full Text

Turn on search term navigation

Copyright Nature Publishing Group Aug 2016

Abstract

Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2 . Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material.

Details

Title
Universal shape and pressure inside bubbles appearing in van der Waals heterostructures
Author
Khestanova, E; Guinea, F; Fumagalli, L; Geim, A K; Grigorieva, I V
Pages
12587
Publication year
2016
Publication date
Aug 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1813940591
Copyright
Copyright Nature Publishing Group Aug 2016