Full text

Turn on search term navigation

Copyright Nature Publishing Group Aug 2016

Abstract

The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD.

Details

Title
The tumour suppressor CYLD regulates the p53 DNA damage response
Author
Fernández-majada, Vanesa; Welz, Patrick-simon; Ermolaeva, Maria A; Schell, Michael; Adam, Alexander; Dietlein, Felix; Komander, David; Büttner, Reinhard; Thomas, Roman K; Schumacher, Björn; Pasparakis, Manolis
Pages
12508
Publication year
2016
Publication date
Aug 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1814160966
Copyright
Copyright Nature Publishing Group Aug 2016