Abstract
Purpose
Due to the large quantity of data that are recorded in energy efficient buildings, understanding the behavior of various underlying operations has become a complex and challenging task. This paper proposes a method to support analysis of energy systems and validates it using operational data from a cold water chiller. The method automatically detects various operation patterns in the energy system.
Methods
The use of k-means clustering is being proposed to automatically identify the On (operational) cycles of a system operating with a duty cycle. The latter's data is subsequently transformed to symbolic representations by using the symbolic aggregate approximation method. Afterward, the symbols are converted to bag of words representation (BoWR) for hierarchical clustering. A gap statistics method is used to find the best number of clusters in the data. Finally, operation patterns of the energy system are grouped together in each cluster. An adsorption chiller, operating under real life conditions, supplies the reference data for validation.
Results
The proposed method has been compared with dynamic time warping (DTW) method using cophenetic coefficients and it has been shown that the BoWR has produced better results as compared to DTW. The results of BoWR are further investigated and for finding the optimal number of clusters, gap statistics have been used. At the end, interesting patterns of each cluster are discussed in detail.
Conclusion
The main goal of this research work is to provide analysis algorithms that automatically find the various patterns in the energy system of a building using as little configuration or field knowledge as possible. A bag of word representation method with hierarchical clustering has been proposed to assess the performance of a building energy system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




