Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Allogeneic stem cell transplantation can be a curative treatment for hematological malignancies. After HLA-matched allogeneic stem cell transplantation, beneficial anti-tumor immunity as well as detrimental side-effects can develop due to donor-derived T-cells recognizing polymorphic peptides that are presented by HLA on patient cells. Polymorphic peptides on patient cells that are recognized by specific T-cells are called minor histocompatibility antigens (MiHA), while the respective peptides in donor cells are allelic variants. MiHA can be identified by reverse strategies in which large sets of peptides are screened for T-cell recognition. In these strategies, selection of peptides by prediction algorithms may be relevant to increase the efficiency of MiHA discovery. We investigated the value of online prediction algorithms for MiHA discovery and determined the in silico characteristics of 68 autosomal HLA class I-restricted MiHA that have been identified as natural ligands by forward strategies in which T-cells from in vivo immune responses after allogeneic stem cell transplantation are used to identify the antigen. Our analysis showed that HLA class I binding was accurately predicted for 87% of MiHA of which a relatively large proportion of peptides had strong binding affinity (56%). Weak binding affinity was also predicted for a considerable number of antigens (31%) and the remaining 13% of MiHA were not predicted as HLA class I binding peptides. Besides prediction for HLA class I binding, none of the other online algorithms significantly contributed to MiHA characterization. Furthermore, we demonstrated that the majority of MiHA do not differ from their allelic variants in in silico characteristics, suggesting that allelic variants can potentially be processed and presented on the cell surface. In conclusion, our analyses revealed the in silico characteristics of 68 HLA class I-restricted MiHA and explored the value of online algorithms to predict T-cell ligands that are created by genetic variants.

Details

Title
The Value of Online Algorithms to Predict T-Cell Ligands Created by Genetic Variants
Author
Dyantha I van der Lee; Pont, Margot J; Falkenburg, J H Frederik; Griffioen, Marieke
First page
e0162808
Section
Research Article
Publication year
2016
Publication date
Sep 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1818681032
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.