Content area

Abstract

The objective of the present study is to develop/establish a web-based medical diagnostic support system (MDSS) by which health care support can be provided for people living in rural areas of a country. In this respect, this research provides a novel approach for medical diagnosis driven by integrating fuzzy and intuitionistic fuzzy (IF) frameworks. Subsequently, based on the proposed approach a web-based MDSS is developed. The proposed MDSS comprises of a knowledge base (KB) and intuitionistic fuzzy inference system (IFIS). Based on the observation that medical data cannot be described with both precision and certainty, a medical KB is constructed in the form of a set of if-then decision rules by employing both fuzzy and IF logics. After constructing the medical KB, a new set of patients is considered for diagnosing the diseases. For each patient, linguistic values of the patients' symptoms are considered as inputs of the proposed IFIS and modeled by using the generalized triangular membership functions. Subsequently, integrated fuzzy and IF rule-based inference system is used to find a valid conclusion for the new set of patients. In a nutshell, in this paper fuzzy rule-based and IFS based inference systems are combined for better and more realistic representation of uncertainty of the medical diagnosis problem and for more accurate diagnostic result. The method is composed of following four steps: (1) the modeling of antecedent part of the rules, which consist of linguistic assessments of the patients' symptoms provided by the doctors/medical experts with their corresponding confidence levels, by using generalized fuzzy numbers; (2) the modeling of consequent part, which reveals the degree of association and the degree of non-association of diseases into the patient, by using IFSs; (3) the use of IF aggregation operator in inference process; (4) the application of relative closeness function to find the final crisp output for a given diagnosis. Finally, the applicability of the proposed approach is illustrated with a suitable case study. This article has also justified the proposed approach by using similarity measurement.

Details

Title
Medical diagnosis with the aid of using fuzzy logic and intuitionistic fuzzy logic
Author
Das, Satyajit; Guha, Debashree; Dutta, Bapi
Pages
850-867
Publication year
2016
Publication date
Oct 2016
Publisher
Springer Nature B.V.
ISSN
0924669X
e-ISSN
1573-7497
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1819068554
Copyright
Springer Science+Business Media New York 2016