Full Text

Turn on search term navigation

Copyright Nature Publishing Group Sep 2016

Abstract

Maximizing the conversion of biogenic carbon feedstocks into chemicals and fuels is essential for fermentation processes as feedstock costs and processing is commonly the greatest operating expense. Unfortunately, for most fermentations, over one-third of sugar carbon is lost to CO2 due to the decarboxylation of pyruvate to acetyl-CoA and limitations in the reducing power of the bio-feedstock. Here we show that anaerobic, non-photosynthetic mixotrophy, defined as the concurrent utilization of organic (for example, sugars) and inorganic (for example, CO2 ) substrates in a single organism, can overcome these constraints to increase product yields and reduce overall CO2 emissions. As a proof-of-concept, Clostridium ljungdahlii was engineered to produce acetone and achieved a mass yield 138% of the previous theoretical maximum using a high cell density continuous fermentation process. In addition, when enough reductant (that is, H2 ) is provided, the fermentation emits no CO2 . Finally, we show that mixotrophy is a general trait among acetogens.

Details

Title
CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion
Author
Jones, Shawn W; Fast, Alan G; Carlson, Ellinor D; Wiedel, Carrissa A; Au, Jennifer; Antoniewicz, Maciek R; Papoutsakis, Eleftherios T; Tracy, Bryan P
Pages
12800
Publication year
2016
Publication date
Sep 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1824543490
Copyright
Copyright Nature Publishing Group Sep 2016