Full Text

Turn on search term navigation

Copyright BioMed Central 2016

Abstract

Background

Due to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity.

Results

The structure of the catalytic domain of MCR-1 at 1.32 A reveals the active site is similar to that of related phosphoethanolamine transferases.

Conclusions

The putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain.

Details

Title
Structure of the catalytic domain of the colistin resistance enzyme MCR-1
Author
Sankaran, Vlatko Stojanoskinumathi; Venkataram Prasad, B V; Poirel, Laurent; Nordmann, Patrice; Palzkill, Timothy
Pages
n/a
Publication year
2016
Publication date
2016
Publisher
BioMed Central
e-ISSN
17417007
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1824952321
Copyright
Copyright BioMed Central 2016