Abstract
Background
Current state-of-the-art approaches to biological event extraction train statistical models in a supervised manner on corpora annotated with event triggers and event-argument relations. Inspecting such corpora, we observe that there is ambiguity in the span of event triggers (e.g., "transcriptional activity" vs. 'transcriptional'), leading to inconsistencies across event trigger annotations. Such inconsistencies make it quite likely that similar phrases are annotated with different spans of event triggers, suggesting the possibility that a statistical learning algorithm misses an opportunity for generalizing from such event triggers.
Methods
We anticipate that adjustments to the span of event triggers to reduce these inconsistencies would meaningfully improve the present performance of event extraction systems. In this study, we look into this possibility with the corpora provided by the 2009 BioNLP shared task as a proof of concept. We propose an Informed Expectation-Maximization (EM) algorithm, which trains models using the EM algorithm with a posterior regularization technique, which consults the gold-standard event trigger annotations in a form of constraints. We further propose four constraints on the possible event trigger annotations to be explored by the EM algorithm.
Results
The algorithm is shown to outperform the state-of-the-art algorithm on the development corpus in a statistically significant manner and on the test corpus by a narrow margin.
Conclusions
The analysis of the annotations generated by the algorithm shows that there are various types of ambiguity in event annotations, even though they could be small in number.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




