Abstract
Background
Heat stress is known to alter follicular dynamics and granulosa cell function and may contribute to the diminished reproductive efficiency commonly observed in mammals during the summer. Although several investigators have studied heat-induced ovarian injury, few reports have focused on the effects of chronic heat stress on ovarian function and the molecular mechanisms through which it induces ovarian injury.
Methods
In Exp. 1, 48 female mice were assigned to a control or heat-stressed treatment. After exposure to a constant temperature of 25 °C for 7, 14, 21 or 28 d (n = 6) or to 42 °C for 3 h per d for 7, 14, 21 or 28 d (n = 6), the mice were euthanized and their ovaries were analyzed for follicular atresia, granulosa cell apoptosis, changes in the abundance of HSP70 protein and serum concentrations of estradiol. In Exp. 2, the expression of HSP70 and aromatase was quantified in antral follicles cultured in vitro at 37 or 42 °C for 24 h. In Exp. 3, granulosa cells from ovaries maintained at 37 or 41 °C for 2 h were analyzed for their expression of HSP70, Bim, caspase-3 and cleaved caspase-3.
Results
In Exp. 1, body weight and food intake of heat-stressed mice decreased (P < 0.05) compared with control mice while the concentration of estradiol in serum was lower (P < 0.05) in heat-stressed mice than in control mice. Compared with control mice, the percentage of atretic follicles and the number of antral follicles with severe apoptotic signals were increased (P < 0.05) after 21 d of heat-stressed treatment. HSP70 protein was more abundant (P < 0.05) in heat-stressed mice than control mice. In Exp. 2, heat stress increased HSP70 and decreased aromatase proteins (P < 0.05) in antral follicles. In Exp. 3, TUNEL-positive granulosa cells from heat-stressed ovaries were observed concomitant with a significant increase in HSP70, Bim and cleaved caspase-3 protein.
Conclusion
Heat-stress in mice decrease estradiol in serum and aromatase in antral follicles but increased number of atretic follicles and granulosa cell undergoing apoptosis which may explain the decreased fertility commonly observed in heat-stressed animals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





