It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Falsified interviews represent a serious threat to empirical research based on survey data. The identification of such cases is important to ensure data quality. Applying cluster analysis to a set of indicators helps to identify suspicious interviewers when a substantial share of all of their interviews are complete falsifications, as shown by previous research. This analysis is extended to the case when only a share of questions within all interviews provided by an interviewer is fabricated. The assessment is based on synthetic datasets with a priori set properties. These are constructed from a unique experimental dataset containing both real and fabricated data for each respondent. Such a bootstrap approach makes it possible to evaluate the robustness of the method when the share of fabricated answers per interview decreases. The results indicate a substantial loss of discriminatory power in the standard cluster analysis if the share of fabricated answers within an interview becomes small. Using a novel cluster method which allows imposing constraints on cluster sizes, performance can be improved, in particular when only few falsifiers are present. This new approach will help to increase the robustness of survey data by detecting potential falsifiers more reliably.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer