It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Using a no-moving-component output-fed bistable fluidic oscillator to control fluid flows into a parallel path has been recognized for a considerable time, but as yet it is not so widely adopted as its obvious benefits would deserve. This may be attributed to the encountered problems associated with its jet behavior, complicated by its loading characteristics. In order to investigate a typical case for the application of the output-fed fluidic oscillator, this paper elaborates on the computational fluid dynamics (CFD) simulation method for studying the performance of a fluidic hammer controlled by an output-fed bistable fluidic oscillator. Given that couple mechanism exists between the flow field in the fluidic oscillator and the impact body, dynamic mesh technique and a user-defined function written in C programming language were used to update the mesh in the simulations. In terms of the evaluation of performance, the focus is on the single-impact energy and output power of the fluidic hammer in this study, to investigate the effect of different parameters of the impact body on them. Experimental tests based on the noncontact measuring method were conducted to verify the simulation results, by which the accuracy and reliability of this CFD simulation method was proved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer