ancientdna parameter [48]. Merged reads were then mapped to modern Bison bison and Bison bonasus mitogenomes using bwa as described previously [37]. The first 100 nt of each linearized reference mitogenome used for mapping was duplicated at the 3? end to allow mapping of fragments overlapping the junction. Mapped read duplicates were then removed using samtools rmdup as previously described [37]. The resulting bam files were then imported into Geneious 6.1.8 [43] and remapped onto the appropriate mitogenome sequence without the 100 nt duplication (B. bison for B. priscus sequences, B. bonasus for the Bb1 and Bb2 sequences). Consensus sequences were generated in Geneious and verified by visual inspection of the aligned reads. Geneious was used to measure coverage depth and the number of covered bases displayed in Additional file 1: Table S4.
Phylogenetic analyses
Sequence alignments were performed using the Muscle algorithm and were visually inspected and adjusted using Geneious 6.1.8 [43]. The maximum likelihood analyses presented in Fig. 1 were computed using PHYML 3.0, using an HKY substitution model with a gamma-distributed rate of variation among sites (+G) and invariant sites (+I) [49]. Robustness of the nodes was estimated using 500 bootstraps. RaXML 8.2.3 was used to generate the maximum likelihood bootstrap support values for the complete mitogenome alignment shown in Fig. 3 [50].
Phylogenetic analyses conducted under the Bayesian framework were performed using the program BEAST v. 1.8.2, which allows estimation of mutation and population history parameters simultaneously from temporally spaced sequence data [51]. Nucleotide substitution models were chosen following comparisons performed with jModelTest 2.1.7 using the Bayesian Information Criteria [52]. The HVR analysis presented in Fig. 2 was performed considering a TN93 model for the nucleotide substitution model, a gamma-distributed rate of variation among sites (+G) with four rate categories and invariant sites (i.e., TN93?+?I?+?G model). For the complete mitogenome analysis presented in Fig. 3, we used four partitions, the HVR, the first and second positions of the codons within the coding region, the third position, and the RNA genes. We considered the HKY?+?I?+?G model for the first two partitions, and the TN93?+?G for the last two. Default priors were used for all parameters of the nucleotide substitution model. For the analysis of Fig. 2, we used a strict molecular clock with a lognormal prior for the substitution rate (mean?=?-15.0, stdev?=?1.4) corresponding to a median of 2?×?10-7 substitutions per site and per year (95 % HPD 1.3?×?10-8 to 3.2?×?10-6) based on the estimation for Bison HVR substitution rate [7]. For the various partitions of the mitogenome of Fig. 3, we used estimates for the human mitogenome substitution rate to set the priors [53]: lognormal priors: HVR, mean?=?-16.1 stdev?=?2.0, corresponding to a median of 1.0?×?10-7 (2?×?10-9 to 5?×?10-6); RNA, mean?=?-18.65 stdev?=?2.0, corresponding to a median of 8.0?×?10-9 (1.6?×?10-10 to 4?×?10-7); first and second positions, mean?=?-18.5 stdev?=?2.0, corresponding to a median of 9.0?×?10-9 (1.8?×?10-10 to 4.7?×?10-7); third position, mean?=?-17.7 stdev?=?2.0 corresponding to a median of 2.0?×?10-8 (4× 10-10 to 1?×?10-6). Finally, a standard coalescent model was considered for the tree prior with a Bayesian skyline plot to model populations (5 and 10 populations with default parameters for the HVR and the mitogenomes respectively). The prior for the tree height followed a log-normal distribution, mean?=?14.6 stdev?=?0.6, truncate to 8.0?×?106 and 1.0?×?105, corresponding to a median of 2.2?×?106 and a 95 % HPD of (6.3?×?106 to 6.7?×?105), which integrates the various fossil finds assumed to correspond to ancestors of cattle and bison [54, 55].
To estimate the posterior distribution of each parameter of interest, we used the Markov Chain Monte Carlo algorithm implemented in the BEAST software. We ran five independent chains with initial values sampled as described above and an input UPGMA tree constructed using a Juke-Cantor distance matrix. Each of these chains was run for 50,000,000 iterations and for each parameter of interest, 18,000 samples (one every 2500 generated ones) were drawn after discarding a 10 % burn-in period. The BEAST output was analyzed with the software Tracer v. 1.6 (http://tree.bio.ed.ac.uk/software/tracer/). Visual inspection of the traces and the estimated posterior distributions suggested that each MCMC had converged on its stationary distribution. Using Logcombiner v. 1.8.2, we further combined all the results from the five independent chains. The maximum clade credibility tree with the median height of the nodes was finally calculated using TreeAnnotator v. 1.8.2 and visualized using FigTree v. 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).
Declarations
Acknowledgments
We thank G Baldacci for continuous support. We thank Lou Saïer for help with the production of HVR data for some samples. We like to thank Marie-Hélène Moncel, Camille Daujeard, and Marie-Anne Julien for providing samples that did not yield genetic results. We acknowledge the contribution to sampling of Myriam Boudadi-Maligne, Jean-Baptiste Mallye, Pierre Pétrequin, Sylvie Lourdaux, and René Rémond. We are grateful to the French ministry of culture, Centre national de Préhistoire for providing the image of the wall paintings of the Chauvet cave.
Funding
The study was supported by the French national research center CNRS. The paleogenomic facility obtained support from the University Paris Diderot within the program "Actions de recherche structurantes". The sequencing facility of the Institut Jacques Monod, Paris, is supported by grants from the University Paris Diderot, the Fondation pour la Recherche Médicale (DGE20111123014), and the Région Ile-de-France (11015901). MT acknowledges financial support through the "Biodiversity of East-European and Siberian large mammals on the level of genetic variation of populations (BIOGEAST)" project within the 7th European Framework Programme, Marie Curie Actions, that allowed sampling to take place in Russia.
Availability of data and material
The produced DNA sequences have been deposited at NCBI: From KX870126 to KX870182 and from KX898005 to KX898020.
Authors' contributions
EMG and TG designed and supervised the overall research with an initial input from MT. DM developed sequence capture and produced the mitogenome data. SG produced the HVR data. TG, EMG, DM, and SG analyzed and interpreted the data. TG, EMG, and EAB wrote the manuscript with inputs from DM and SG. JPB provided samples, discussed the data and corrected the manuscript. MT, RMA, GBa, GBo, JCC, SD, SM, OP, NS, and HPU provided samples and feedbacks on the manuscript. All authors read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable since no data from individuals were used.
Ethics approval and consent to participate
Not applicable since we did not use biological material.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Additional files
Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Phil Trans RL Soc Lond B. 2004;359:183-95.Google Scholar
Markova AK, Puzachenko AY, van Kolfschoten T, Kosintsev PA, Kuznetsova TV, Tikhonov AN, Bachura OP, Ponomarev DV, van der Pflicht J, Kuitems M. Changes in the Eurasian distribution of the musk ox (Ovibos moschatus) and the extinct bison (Bison priscus) during the last 50 ka BP. Quatern Int. 2015;378:99-110.Google Scholar
Guthrie RD. Frozen fauna of the Mammoth Steppe. The story of Blue Babe. Chicago and London: The University of Chicago Press; 1990.Google Scholar
Brugal JP. Le Bison (Bovinae, Artiodactyla) du gisement Pléistocène moyen ancien de Durfort (Gard, France). Bull Mus Nat Hist Nat Section C: Sciences de la Terre. 1995;16(2-4):349-81.Google Scholar
Brugal JP, David F, Enloe J, Jaubert J. Le Bison, gibier et moyen de subsistance des hommes du Paléolithique aux Paléoindiens des grandes plaines. Antibes: APDCA Editions; 1999.Google Scholar
Flerow CC. Systematics and Evolution. In: Sokolov VE, editor. European Bison -Morphology, Systematics, Evolution, Ecology. [in Russian]. Moscow: Nauka (USSR Ac. of Sc.); 1979. p. 9-127.Google Scholar
Shapiro B, Drummond AJ, Rambaut A, Wilson MC, Matheus PE, Sher AV, Pybus OG, Gilbert MT, Barnes I, Binladen J, et al. Rise and fall of the Beringian steppe bison. Science. 2004;306(5701):1561-5.Google Scholar
Groves CP. Systematic relationship in the Bovini (Artiodactyla, Bovidae). Z Zool Syst Evolutionforsch. 1981;19(4):264-78.Google Scholar
Hassanin A, An J, Ropiquet A, Nguyen TT, Couloux A. Combining multiple autosomal introns for studying shallow phylogeny and taxonomy of Laurasiatherian mammals: Application to the tribe Bovini (Cetartiodactyla, Bovidae). Mol Phylogenet Evol. 2013;66(3):766-75.Google Scholar
Kowalski K. The evolution and fossil remains of the European Bison. Acta Theriol. 1967;12(21):335-8.Google Scholar
Krasi?ska M, Krasi?ski ZA. European Bison: The Nature Monograph. 2nd ed. Heidelberg: Springer; 2013.Google Scholar
Cooper A, Turney C, Hughen KA, Brook BW, McDonald HG, Bradshaw CJ. Paleoecology. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science. 2015;349(6248):602-6.Google Scholar
Boeskorov GG, Potapova OR, Mashchenko EN, Protopopov AV, Kuznetsova TV, Agenbroad L, Tikhonov AN. Preliminary analyses of the frozen mummies of mammoth (Mammuthus primigenius), bison (Bison priscus) and horse (Equus sp.) from the Yana-Indigirka Lowland, Yakutia, Russia. Integr Zool. 2014;9(4):471-80.Google Scholar
Kirillova IV, Zanina OG, Chernova OF, Lapteva EG, Trofimova SS, Lebedev VS, Tiunov AV, Soares AER, Shidlovskiy FK, Shapiro B. An ancient bison from the mouth of the Rauchua River (Chukotka, Russia). Quatern Res. 2015;84(2):232-45.Google Scholar
DegerbØl M, Iversen J. The Bison in Denmark. A zoological and geological investigation of the finds in Danish Pleistocene deposits. Copenhagen: Danm. Geol. UndersØgelse; 1945.Google Scholar
Geist V. The relation of social evolution and dispersal in ungulates during the Pleistocene, with emphasis on the old world Deer and the genus Bison. Quat Res. 1971;1(3):283-21.Google Scholar
Rautian GS, Kalabushkin BA, Nemtsev AS. A new subspecies of the European Bison, Bison bonasus montanus ssp. nov. (Bovidae, Artiodactyla). Dokl Biol Sci. 2000;375:636-40.Google Scholar
Bocherens H, Hofman-Kaminska E, Drucker DG, Schmolcke U, Kowalczyk R. European bison as a refugee species? Evidence from isotopic data on Early Holocene bison and other large herbivores in northern Europe. PLoS One. 2015;10(2), e0115090.Google Scholar
Spassov N, Stovtechev T. On the origin of the wisent, Bison bonasus (Linnaeus, 1758): presence of the wisent in the upper Palaeolithic art of Eurasia. Advances in Paleontology "Hen to Panta", papers in honour of C. Radulescu and P.M. Samson. Bucharest; 2003. pp. 125-30
Potter BA, Gerlach SC, Gates CC, Boyd DP, Oetelaar GA, Shaw JS. History of Bison in North America. In: Gates CC, Freese CH, Gogan PJP, Kotzman M, editors. American Bison: Status Survey and Conservation Guidelines 2010. Gland: IUCN; 2010. p. 5-12.
Verkaar EL, Nijman IJ, Beeke M, Hanekamp E, Lenstra JA. Maternal and paternal lineages in cross-breeding bovine species. Has wisent a hybrid origin? Mol Biol Evol. 2004;21(7):1165-70.Google Scholar
Zeyland J, Wolko L, Lipinski D, Wozniak A, Nowak A, Szalata M, Bocianowski J, Slomski R. Tracking of wisent-bison-yak mitochondrial evolution. J Appl Genet. 2012;53(3):317-22.Google Scholar
Marsolier-Kergoat MC, Palacio P, Berthonaud V, Maksud F, Stafford T, Begouen R, Elalouf JM. Hunting the extinct Steppe Bison (Bison priscus) mitochondrial genome in the Trois-Freres paleolithic painted cave. PLoS One. 2015;10(6), e0128267.Google Scholar
Lisiecki LE, Raymo ME. A Pliocene-Pleistocene stack of 57 globally distributed benthic ?18O records. Paleoceanography. 2005;20(1):1-17.Google Scholar
Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen HB, Dahl-Jensen D, Fischer H, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004;431(7005):147-51.Google Scholar
Van Andel TH, Tzedakis PC. Palaeolithic landscapes of Europe and environs, 150,000-25,000 years ago: an overview. Quat Sci Rev. 1996;15(5-6):481-500.Google Scholar
Guiot J, Pons A, de Beaulieu JL, Reille M. A 140,000 year climatic reconstruction from two European pollen records. Nature. 1989;338:309-13.Google Scholar
Palombo MR. Deconstructing mammal dispersals and faunal dynamics in SW Europe during the Quaternary. Quat Sci Rev. 2014;96:50-71.Google Scholar
Julien M-F, Bocherens H, Burke A, Drucker DG, Patou-Mathis M, Krotova O, Péan S. Were European steppe bison migratory? 18O, 13C and Sr intra-tooth isotopic variations applied to a palaeoethological reconstruction. Quarternary Int. 2012;271:106-19.Google Scholar
Quiles A, Valladas H, Bocherens H, Delque-Kolic E, Kaltnecker E, van der Plicht J, Delannoy JJ, Feruglio V, Fritz C, Monney J, et al. A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d'Arc, Ardeche, France. Proc Natl Acad Sci U S A. 2016;113(17):4670-5.Google Scholar
Boyd DP, Wilson GA, Gates CC. Taxonomy and nomenclature. In: Gates CC, Freese CH, Gogan PJP, Kotzman M, editors. American Bison: Status Survey and Conservation Guidelines 2010. Gland: IUCN; 2010. p. 13-8.
Yudin NS, Kulikov IV, Gunbin KV, Aitnazarov RB, Kushnir AV, Sipko TP, Moshkin MP. Detection of mitochondrial DNA from domestic cattle in European bison (Bison bonasus) from the Altai Republic in Russia. Anim Genet. 2012;43(3):362.Google Scholar
Halbert ND, Derr JN. A comprehensive evaluation of cattle introgression into US federal bison herds. J Hered. 2007;98(1):1-12.Google Scholar
Martínez-Navarro B, Rook L, Papini M, Libsekal Y. A new species of bull from the Early Pleistocene paleoanthropological site of Buia (Eritrea): parallelism on the dispersal of the genus Bos and the Acheulian culture. Quatern Int. 2010;212(2):169-75.Google Scholar
Gautier M, Moazami-Goudarzi K, Leveziel H, Parinello H, Groh C, Riall S, Kowalczyk R, Flori L. Deciphering the wisent demographic and adaptive histories from individual whole-genome sequences. Mol Biol Evol. 2016;33(11):2801-14.Google Scholar
Wecek K, Hartmann S, Paijmans JLA, Taron U, Xenikoudakis G, Cahill JA, Heintzman PD, Shapiro B, Baryshnikov G, Bunevich AN, et al. Complex admixture preceded and followed the extinction of wisent in the wild. bioRxiv. 2016. doi: http://dx.doi.org/10.1101/059527.
Bennett EA, Massilani D, Lizzo G, Daligault J, Geigl EM, Grange T. Library construction for ancient genomics: single strand or double strand? BioTechniques. 2014;56(6):289-90. 292-86, 298, passim.Google Scholar
Cote NM, Daligault J, Pruvost M, Bennett EA, Gorge O, Guimaraes S, Capelli N, Le Bailly M, Geigl EM, Grange T. A new high-throughput approach to genotype ancient human gastrointestinal parasites. PLoS One. 2016;11(1), e0146230.Google Scholar
Guimaraes S, Pruvost M, Daligault J, Stoetzel E, Côté NM-L, Bennett EA, Nicolas V, Lalis A, Denys C, Geigl E-M, et al. A cost-effective high-throughput metabarcoding approach powerful enough to genotype ~44,000 year-old rodent remains from Northern Africa. Mol Ecol Res. 2016. Ahead of print. doi:10.1111/1755-0998.12565.
Pruvost M, Grange T, Geigl E-M. Minimizing DNA contamination by using UNG-coupled quantitative real-time PCR on degraded DNA samples: application to ancient DNA studies. BioTechniques. 2005;38(4):569-75.Google Scholar
Champlot S, Berthelot C, Pruvost M, Bennett EA, Grange T, Geigl EM. An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS ONE. 2010;5(9), e13042.Google Scholar
Pruvost M, Schwarz R, Bessa Correia V, Champlot S, Braguier S, Morel N, Fernandez-Jalvo Y, Grange T, Geigl E-M. Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci U S A. 2007;104(3):739-44.Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-9.Google Scholar
Gorge O, Bennett EA, Massilani D, Daligault J, Pruvost M, Geigl EM, Grange T. Analysis of ancient DNA in microbial ecology. Methods Mol Biol. 2016;1399:289-315.Google Scholar
Rueckert A, Morgan HW. Removal of contaminating DNA from polymerase chain reaction using ethidium monoazide. J Microbiol Methods. 2007;68(3):596-600.Google Scholar
Lopez-Barragan MJ, Quinones M, Cui K, Lemieux J, Zhao K, Su XZ. Effect of PCR extension temperature on high-throughput sequencing. Mol Biochem Parasitol. 2011;176(1):64-7.Google Scholar
Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182-9.Google Scholar
Renaud G, Stenzel U, Kelso J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 2014;42(18):e141.Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307-21.Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-3.Google Scholar
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.Google Scholar
Soares P, Ermini L, Thomson N, Mormina M, Rito T, Rohl A, Salas A, Oppenheimer S, Macaulay V, Richards MB. Correcting for purifying selection: an improved human mitochondrial molecular clock. Am J Hum Genet. 2009;84(6):740-59.Google Scholar
Martínez-Navarro B, Ros-Montoya S, Espigares MP, Palmqvist P. Presence of the Asian origin Bovini, Hemibos sp. aff. Hemibos gracilis and Bison sp., at the early Pleistocene site of Venta Micena (Orce, Spain). Quatern Int. 2011;243(1):54-60.Google Scholar
Qui Z, Deng T, Wang B. Early Pleistocene mammalian fauna from Longdan, Dongxian, Gansu. China Paleontologia Sinica. 2004;191(C27):1-198.Google Scholar
Airvaux J. Le site des Plumettes à Lussac-les-Châteaux (Vienne). In: Préhistoire de Poitou-Charentes. vol. Actes du 111é congrès des Sociétés Savantes. Paris: CTHS; 1987. pp. 193-200.
Baryshnikov G. Late Pleistocene brown bear (Ursus arctos) from the Caucasus. Russ J Theriol. 2010;9(1):9-17.Google Scholar
Baryshnikov G, Hoffecker JF, Burgess RL. Palaeontology and Zooarchaeology of Mezmaiskaya Cave (Northwestern Caucasus, Russia). J Arch Sci. 1996;23(3):313-35.Google Scholar
Baryshnikov GF. Pleistocene Felidae (Mammalia, Carnivora) from Paleolithic site in Kudaro caves in the Caucasus. Proc Zool Inst RAS. 2011;315(3):197-226.Google Scholar
Beauval C, Morin E. Les repaires d'hyènes du Lussacois (Lussac-les-Châteaux,Vienne, France). Apport des sites des Plumettes et des Rochers de Villeneuve. In: Préhistoire entre Vienne et Charente Hommes et sociétés du Paléolithique. Buisson-Catil J, Primault J, editors. Chauvigny: Association des Publications Chauvinoises; 2010. pp. 175-90.
Bitard B, Madelaine S. La grotte de La Berbie (Castels - Dordogne). Spéléo. 1994;AN8:31-40.
Boeskorov GG, Bakulina NT, Davydov SP, Shchelchkova MV, Solomonov NG. Study of Pollen and Spores from the Stomach of a Fossil Woolly Rhinoceros Found in the Lower Reaches of the Kolyma River. Doklady Biol Sci. 2011;436:23-5.Google Scholar
Castel J-C, Boudadi-Maligne M, Ducasse S, Renard C, Chauvière F-X, Kuntz D, Mallye J-B. Animal exploitation strategies in Eastern Aquitaine (France) during the Last Glacial Maximum. In: Foulds FWF, Drinkall HC, Perri AR, Clinnick DTG, Walker JWP, editors. Wild Things: Recent Advances in Palaeolithic and Mesolithic Research. Durham Symposium, March 24-25, 2012. Oxford: Oxbow; 2014. p. 160-74.Google Scholar
Castel J-C, Coumont M-P, Boudadi-Maligne M, Prucca A. Rôle et origine des grands carnivores dans les accumulations naturelles. Le cas des loups (Canis lupus) de l'Igue du Gral (Sauliac-sur-Célé, Lot, France). Revue de Paléobiologie Genève. 2010;29(2):411-25.Google Scholar
Castel J-C, Coumont M-P, Brugal J-P, Laroulandie V, Camus H, Chauvière F-X, Cochard D, Guadelli J-L, Kuntz D, Martin H, et al. La fin du Paléolithique supérieur en Quercy: l'apport de l'Igue du Gral (Sauliac-sur-Célé, Lot). In: Jaubert J, Ortega I, Bordes J-G, editors. Les sociétés du Paléolithique dans un Grand Sud-Ouest: nouveaux gisements, nouveaux résultats, nouvelles methods. Journées de la Société Préhistorique Française, Bordeaux, 24-25 Novembre 2006, vol. Mémoire XLVII. Nanterre: Société Préhistorique Française; 2008. p. 335-53.Google Scholar
Coumont M-P, Brugal J-P, Castel J-C, Costamagno S, Jaubert J, Mourre V. Les avens-pièges à faible indice de fréquentations humaines: caractérisation paléoécologique, taphonomique et anthropologique. In: Modalité d'occupation et exploitation des milieux au Paléolithique dans le Sud-Ouest de la France: l'exemple du Quercy Actes de la session C67, XVème Congrès mondial de l'UISPP, Lisbon, September 2006. Jarry M, Brugal J-P, Ferrier C, editors. vol. n° 4: Paleo, supplément; 2013. pp. 181-96.
Discamps E. Hommes et hyènes face aux recompositions des communautés d'ongulés (MIS 5-3): Eléments pour un cadre paléoécologique des sociétés du Paléolithique moyen et supérieur ancien d'Europe de l'Ouest. PhD Dissertation. Bordeaux: University of Bordeaux; 2011.Google Scholar
Gamberi Almendra de Carvalho L, Argant A, Argant J, Barth P, Boudadi-Maligne M, Boulbes N, Brugal J-P, Caramelli D, Condemi S, Crégut E, et al. L'aven de l'Arquet - Barjac (30) : étude d'un aven piège. Ardèche Archéologie. 2011;28:3-10.Google Scholar
Golovanova LV, Hoffecker JF, Kharitonov VM, Romanova GP. Mezmaiskaya cave: a Neanderthal occupation in the Northern Caucasus. Curr Anthropol. 1999;40(1):77-86.Google Scholar
Lioubine VP. L'Acheuléen du Caucase, ERAUL 93. Liège: Université de Liège; 2002.Google Scholar
Madelaine S. La Berbie (Castels). Bilan scientifique de la région aquitaine 2000. Paris: Ministère de la Culture et de la Communication, Sous-Direction de l'Archéologie; 2001. p. 24.Google Scholar
Merceron G, Madelaine S. Molar microwear pattern and palaeoecology of ungulates from La Berbie (Dordogne, France): environmental context of the last Neanderthal populations. Boreas. 2006;35:272-8.Google Scholar
Pétrequin P. Les sites littoraux néolithiques de Clairvaux-Les-Lacs et de Chalain (Jura) III Chalain station 3, 3200-2900 av. J.C. Paris: Maison des Sciences de l'Homme; 1997.Google Scholar
Pétrequin P, Arbogast R-M, Bourquin-Mignot C, Lavier C, Viellet A. Demographic growth, environmental changes and technical adaptations: responses of an agricultural community from the 32nd to the 30th centuries BC. World Archaeol. 1998;30(2):181-92.Google Scholar
Putelat O. Les relations homme-animal dans le monde des vivants et des morts, Étude archéozoologique des établissements et des regroupements funéraires ruraux de l'Arc jurassien et de la Plaine d'Alsace, de la fin de l'Antiquité tardive au premier Moyen Âge. PhD Dissertation. Paris: University of Paris 1 Panthéon-Sorbonne; 2015.Google Scholar
Skinner AR, Blackwell BAB, Martin S, Ortega A, Blickstein JIB, Golovanova LV, Doronichev VB. ESR dating at Mezmaiskaya Cave, Russia. Appl Radiat Isot. 2005;62(2):219-24.Google Scholar
Tournepiche JF. Les grands mammifères pléistocènes de Poitou-Charente. Paléo. 1996;8:109-41.Google Scholar
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright BioMed Central 2016
Abstract
Background
Climatic and environmental fluctuations as well as anthropogenic pressure have led to the extinction of much of Europe's megafauna. The European bison or wisent (Bison bonasus), one of the last wild European large mammals, narrowly escaped extinction at the onset of the 20th century owing to hunting and habitat fragmentation. Little is known, however, about its origin, evolutionary history and population dynamics during the Pleistocene.
Results
Through ancient DNA analysis we show that the emblematic European bison has experienced several waves of population expansion, contraction, and extinction during the last 50,000 years in Europe, culminating in a major reduction of genetic diversity during the Holocene. Fifty-seven complete and partial ancient mitogenomes from throughout Europe, the Caucasus, and Siberia reveal that three populations of wisent (Bison bonasus) and steppe bison (B. priscus) alternately occupied Western Europe, correlating with climate-induced environmental changes. The Late Pleistocene European steppe bison originated from northern Eurasia, whereas the modern wisent population emerged from a refuge in the southern Caucasus after the last glacial maximum. A population overlap during a transition period is reflected in ca. 36,000-year-old paintings in the French Chauvet cave. Bayesian analyses of these complete ancient mitogenomes yielded new dates of the various branching events during the evolution of Bison and its radiation with Bos, which lead us to propose that the genetic affiliation between the wisent and cattle mitogenomes result from incomplete lineage sorting rather than post-speciation gene flow.
Conclusion
The paleogenetic analysis of bison remains from the last 50,000 years reveals the influence of climate changes on the dynamics of the various bison populations in Europe, only one of which survived into the Holocene, where it experienced severe reductions in its genetic diversity. The time depth and geographical scope of this study enables us to propose temperate Western Europe as a suitable biotope for the wisent compatible with its reintroduction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer