Full text

Turn on search term navigation

© 2016 Arulmozhiraja et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dipeptidyl peptidase IV (DPP-4) enzyme is responsible for the degradation of incretins that stimulates insulin secretion and hence inhibition of DPP-4 becomes an established approach for the treatment of type 2 diabetics. We studied the interaction between DPP-4 and its inhibitor drugs (sitagliptin 1, linagliptin 2, alogliptin 3, and teneligliptin 4) quantitatively by using fragment molecular orbital calculations at the RI-MP2/cc-pVDZ level to analyze the inhibitory activities of the drugs. Apart from having common interactions with key residues, inhibitors encompassing the DPP-4 active site extensively interact widely with the hydrophobic pocket by their hydrophobic inhibitor moieties. The cumulative hydrophobic interaction becomes stronger for these inhibitors and hence linagliptin and teneligliptin have larger interaction energies, and consequently higher inhibitory activities, than their alogliptin and sitagliptin counterparts. Though effective interaction for both 2 and 3 is at subsite, 2 has a stronger binding to this subsite interacting with Trp629 and Tyr547 than 3 does. The presence of triazolopiperazine and piperazine moiety in 1 and 4, respectively, provides the interaction to the S2 extensive subsite; however, the latter’s superior inhibitory activity is not only due to a relatively tighter binding to the S2 extensive subsite, but also due to the interactions to the S1 subsite. The calculated hydrophobic interfragment interaction energies correlate well with the experimental binding affinities (KD) and inhibitory activities (IC50) of the DPP-4 inhibitors.

Details

Title
Comparative Binding Analysis of Dipeptidyl Peptidase IV (DPP-4) with Antidiabetic Drugs – An Ab Initio Fragment Molecular Orbital Study
Author
Sundaram Arulmozhiraja; Matsuo, Naoya; Ishitsubo, Erika; Okazaki, Seiji; Shimano, Hitoshi; Tokiwa, Hiroaki
First page
e0166275
Section
Research Article
Publication year
2016
Publication date
Nov 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1838211915
Copyright
© 2016 Arulmozhiraja et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.