It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In mammalian females, reproductive capacity is determined by the size of the primordial follicle pool. During embryogenesis, oogonia divide mitotically but cytokinesis is incomplete so oogonia remain connected in germ cell cysts. Oogonia begin to enter meiosis at 13.5 days postcoitum in the mouse and over several days, oocytes progress through the stages of meiotic prophase I arresting in the diplotene stage. Concurrently, germ cell cysts break apart and individual oocytes become surrounded by granulosa cells forming primordial follicles. In rats, inhibition of a synaptonemal complex protein caused premature arrival at the diplotene stage and premature primordial follicle assembly suggesting diplotene arrest might trigger primordial follicle formation. Cyst breakdown and primordial follicle formation are blocked by exposure to steroid hormones but hormone effects on the timing of diplotene arrest are unclear. Here, we asked: (1) if oocytes were required to arrest in diplotene before follicles formed, (2) if all oocytes within a germ cell cyst arrested at diplotene synchronously, and (3) if steroid hormones affected progression through prophase I.
Methods
Meiotic stage and follicle formation were assessed in histological sections. Statistical differences over time were determined using one-way ANOVA followed by Newman-Keuls multiple comparisons test. To determine if steroid hormones affect the rate of progression to the diplotene stage, 17.5 dpc ovaries were placed in organ culture with media containing estradiol, progesterone or both hormones. In this case, differences were determined using one-way ANOVA followed by Dunnett's multiple comparisons test.
Results
We found primordial follicles containing oocytes at the diplotene stage as well as follicles containing oocytes at pre-diplotene stages. We also found individual germ cell cysts containing oocytes at both diplotene and pre-diplotene stages. Progesterone but not estradiol reduced the number of diplotene oocytes in ovary organ culture.
Conclusions
Our results suggest that meiotic progression and primordial follicle formation are independent events. In addition, oocytes in germ cell cysts do not synchronously proceed through meiosis. Finally, only progesterone delayed transit though meiotic prophase I.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer