Full text

Turn on search term navigation

© 2016 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Low molecular weight heparins are complex polycomponent drugs that have recently become amenable to top-down analysis using liquid chromatography-mass spectrometry. Even using open source deconvolution software, DeconTools, and automatic structural assignment software, GlycReSoft, the comparison of two or more low molecular weight heparins is extremely time-consuming, taking about a week for an expert analyst and provides no guarantee of accuracy. Efficient data processing tools are required to improve analysis. This study uses the programming language of Microsoft Excel Visual Basic for Applications to extend its standard functionality for macro functions and specific mathematical modules for mass spectrometric data processing. The program developed enables the comparison of top-down analytical glycomics data on two or more low molecular weight heparins. The current study describes a new program, GlycCompSoft, which has a low error rate with good time efficiency in the automatic processing of large data sets. The experimental results based on three lots of Lovenox®, Clexane® and three generic enoxaparin samples show that the run time of GlycCompSoft decreases from 11 to 2 seconds when the data processed decreases from 18000 to 1500 rows.

Details

Title
GlycCompSoft: Software for Automated Comparison of Low Molecular Weight Heparins Using Top-Down LC/MS Data
Author
Wang, Xiaohua; Liu, Xinyue; Li, Lingyun; Zhang, Fuming; Hu, Min; Ren, Fuji; Chi, Lianli; Linhardt, Robert J
First page
e0167727
Section
Research Article
Publication year
2016
Publication date
Dec 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1848103727
Copyright
© 2016 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.