It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The multi-contrast assessment of the carotid artery wall has become an important diagnostic tool for the characterization of atherosclerotic plaque and vessel wall thickening. For providing the required T1-, T2-, and proton density weighted contrast, multi-slice turbo spin echo (TSE) techniques are normally applied. The straightforward extension of the TSE techniques to volumetric imaging of large sections of the carotid arteries is limited by the resulting long acquisition times. Where the acquisition of a T1-weighted contrast can be accelerated by applying a T1-weighted fast gradient echo technique, acceleration of the T2-weighted contrast is not as straightforward.
Methods
In this work, the combination of a T2 preparation and a conventional fast gradient echo technique (T2P-3DGE) was evaluated for rapid acquisition of a T2-weighted image contrast. Acquisition parameters were optimized in an initial in vitro study in direct comparison to the conventional T2-weighted TSE (T2W-3DTSE) technique. Subsequently, the T2P-3DGE technique was evaluated in vivo.
Results
In direct comparison, the T2P-3DGE sequence provided similar T2 contrast as the respective T2W-3DTSE sequence. After correction of an observed intensity offset, most likely caused by the additional T1-weighting of the T2P-3DGE sequence, no significant difference between the two T2-weighted sequences were observed in phantom data. The good correlation of the image contrast between the two sequences was confirmed in the initial in-vivo study, proving a potential reduction of the scan time for T2P-3DGE to 25% of the respective T2W-3DTSE technique.
Conclusion
The in vitro as well as the in vivo results clearly indicate the potential of the T2P-3DGE technique for providing similar T2 image contrast as in the conventional techniques. Thereby, the acquisition times could be substantially reduced to about 25% of the respective 3D-TSE technique.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer