ARTICLE
Received 30 Jan 2016 | Accepted 11 Nov 2016 | Published 3 Jan 2017
Scalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, Ti3C2 nanoparticles, as a highly efcient co-catalyst. Ti3C2 nanoparticles are rationally integrated with cadmium sulde via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 mmol h 1 g 1 and an apparent quantum efciency of 40.1% at 420 nm.
This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of Ti3C2 nanoparticles. Furthermore, Ti3C2 nanoparticles also serve as an efcient co-catalyst on ZnS or ZnxCd1 xS. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes.
DOI: 10.1038/ncomms13907 OPEN
Ti3C2 MXene co-catalyst on metal sulde photo-absorbers for enhanced visible-light photocatalytic hydrogen production
Jingrun Ran1,*, Guoping Gao2,*, Fa-Tang Li1,3, Tian-Yi Ma1, Aijun Du2 & Shi-Zhang Qiao1
1 School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia. 2 School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia. 3 College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to S-Z.Q. (email: mailto:[email protected]
Web End [email protected] ).
NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 1
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907
The generation of hydrogen (H2) from water using solar energy is regarded as a promising strategy for solving global energy problems13. Particularly, photocatalytic
water splitting by utilizing semiconductor photocatalysts has demonstrated huge potential as a clean, low-cost and sustainable approach for solar H2 production. However, despite tremendous achievement in this area during the past decades1,4,5, it is still a great challenge to develop highly efcient, cost-effective and robust photocatalysts driven by sunlight. In recent years, co-catalysts have shown great success in boosting both the activity and stability of photocatalysts69. Unfortunately, the high price and extreme scarcity of the most active H2 evolution co-catalyst,
Pt, restricts the commercialization of current photocatalysts. Therefore, seeking an inexpensive and highly active co-catalyst to replace Pt is of paramount signicance for achieving large-scale solar H2 production in the future.
To date, although enormous progress has been made in developing earth-abundant co-catalysts, several major problems, arising from the intrinsic properties of current co-catalysts, still exist: (i) lack of abundant surface functionalities to establish strong connection with photocatalysts, for fast interfacial charge transfer and long-term stability; (ii) inefcient electron shuttling within co-catalysts due to their poor semiconducting/ insulating conductivity10 or destruction of p-conjugated system (for example, graphene oxide)11; (iii) undesirable Gibbs free energy for H2 evolution; (iv) insufcient contact with water molecules due to lack of hydrophilic functionalities; and (v) instability and/or requirement of non-aqueous environment (for example, hydrogenases and their mimics)12,13. Therefore, it is highly desirable to seek a brand-new family of materials as the next generation co-catalysts that can overcome these drawbacks.
MXene, a new family of over 60 two-dimensional (2D) metal carbides, nitrides or carbonitrides14,15, has shown great potential as electrodes in (Li)-ion batteries16 and supercapacitors17. Notably, their distinguished characteristics render them highly promising for solving the above problems as: (i) MXene possesses numerous hydrophilic functionalities (OH and O) on its surface, enabling it to easily construct strong connection with various semiconductors;(ii) the excellent metallic conductivity of MXene assures efcient charge-carrier transfer; (iii) the exposed terminal metal sites (for example, Ti, Nb or V) on MXene might lead to much stronger redox reactivity than that of the carbon materials18; (iv) the presence of numerous hydrophilic functionalities on MXene promotes its strong interaction with water molecules; and (v) MXene can stably function in aqueous solutions. Considering the above outstanding properties of the MXene family, it is anticipated that MXene will be a promising material to be employed in photocatalysis. However, to the best of our knowledge, there is no report on exploring MXene as a co-catalyst for photocatalysis.
Herein, we utilize density functional theory (DFT) calculations to explore the potential of Ti3C2 MXene as a H2 evolution co-catalyst. On the basis of theoretical studies, we report a rational design and synthesis of Ti3C2 nanoparticles (NPs) and merge them with a chosen photocatalyst, CdS, to successfully achieve a super high visible-light photocatalytic H2-production activity. The origin of this high activity is studied by both experimental techniques and theoretical investigations. Moreover, the general function of Ti3C2 NPs as an active co-catalyst for other photocatalysts is also conrmed, illustrating the considerable potential of MXene family materials to replace rare and costly Pt in photocatalysis/photoelectrocatalysis.
ResultsTheoretical exploration of Ti3C2 MXene as a co-catalyst.
To explore the possibility of using Ti3C2 MXene as a highly
efcient and low-priced co-catalyst to promote H2 production, we have conducted a series of theoretical investigations based on DFT calculations. A highly active co-catalyst can not only rapidly extract photo-induced electrons from a photocatalyst to its surface, but also efciently catalyse the H2 evolution on its surface, by using those electrons6. Herein, we rst focus on the H2 evolution activity to evaluate whether Ti3C2 is an excellent candidate. Usually, the overall H2 evolution reaction (HER) pathway can be summarized by a three-state diagram, composed of an initial state H e , an intermediate adsorbed H*, and a
nal product H2 (refs 19,20). The Gibbs free energy of the intermediate state, |DGH*|, is regarded as a major indicator of the HER activity for various catalysts. The most desirable value for |DGH*| should be zero20. For example, the highly active and well-known HER catalyst, Pt, shows a near-zero value of DGH*E 0.09 eV (refs 21,22). Thus, we performed DFT
studies to calculate DGH* for atomic H adsorption on the surface of O-terminated Ti3C2, pure Ti3C2 and F-terminated Ti3C2, respectively. Their structural models are displayed in Fig. 1a and Supplementary Figs 1,2, respectively. Pure Ti3C2 exhibits a largely negative DGH* 0.927 eV (Supplementary Fig. 3a), suggesting
too strong chemical adsorption of H* on its surface. Meanwhile, a largely positive DGH* 1.995 eV is observed for F-terminated
Ti3C2 (Supplementary Fig. 3b), indicating very weak H* adsorption and easy product desorption. Unfortunately, both conditions are unfavourable for HER. Surprisingly, O-terminated Ti3C2 shows a near-zero value of |DGH*| 0.00283 eV at its
optimal H* coverage (y 1/2) (Fig. 1b; Supplementary Table 1).
This value is even much lower than that of Pt or highly active earth-abundant HER catalysts (Fig. 1c), for example, MoS2 (DGH* 0.08 eV)23 or WS2 (DGH* 0.22 eV)23, clearly indicating
the remarkable HER activity of O-terminated Ti3C2 from the viewpoint of thermodynamics.
Apart from extraordinary HER activity, a highly active co-catalyst must efciently extract the photo-induced electrons from photocatalysts and deliver them to its surface, which requires appropriate electronic band structure and excellent conductivity. Hence, we employ DFT calculations to determine the band structures of Ti3C2, F-terminated Ti3C2 and O-terminated Ti3C2, respectively. As shown in Supplementary Fig. 4a,b, pure Ti3C2
exhibits metallic characteristics with substantial electronic states crossing the Fermi level. In comparison, F-terminated Ti3C2
(Supplementary Fig. 4c,d) and O-terminated Ti3C2 (Fig. 1d,e) exhibit decreased numbers of states at the Fermi level, indicating their lower conductivities. Nevertheless, the continuous electronic states crossing Fermi level for F-terminated Ti3C2
and O-terminated Ti3C2 indicate that their conductivities are still good. Hence, Ti3C2 retains its outstanding electrical conductivity, even after decoration with numerous functionalities, implying its exceptional capability to transport electrons. We believe this unique merit of MXene renders it a superior co-catalyst outperforming its counterparts, such as graphene and carbon nanotubes, which suffer obvious conductivity loss after their termination with O, OH and COO (ref. 11). Furthermore, the Fermi levels (EF) of Ti3C2, O-terminated Ti3C2 and F-terminated Ti3C2 are calculated to be 0.05 V, 1.88 V
and 0.15 V versus SHE, respectively. Among them, O-terminated Ti3C2 displays the most positive value of EF, implying its strongest capacity to accept photo-induced electrons from semiconductor photocatalysts.
On the basis of the above theoretical explorations, it can be concluded that both pure Ti3C2 and F-terminated Ti3C2 are not eligible candidates due to their inefcient HER activity and unfavourable EF. In contrast, O-terminated Ti3C2 is predicted to be a highly promising co-catalyst, given its outstanding HER activity, excellent metallic conductivity and desirable EF.
2 NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907 ARTICLE
a
Side view of O-terminated Ti3C2
Top view of O-terminated Ti3C2
C O
Ti
b c
0.6
Side view ([afii9835] = 1/2)
0.25
0.15
[afii9835] = 3/4 [afii9835] = 5/8
[afii9835] = 3/8 [afii9835] = 1/2
[afii9835] = 1/4 [afii9835] = 1/8
Top view ([afii9835] = 1/2)
H*
O-terminated Ti3C2
Pt
0.20
0.4
Free energy (eV)
Free energy (eV)
0.2
0.10
0.0
0.05
H+ + e 1/2 H2
WS2
MoS2
H+ + e
1/2 H2
0.00
0.2
0.05
0.4
H*
0.10
Reaction coordinate Reaction coordinate
d e
3
12
2
10
TDOS
Ti
C
O
O-terminated Ti3C2
1
8
Energy (eV)
0
DOS (a.u.)
6
4
1
2
2
3
M
K
0 4 2 0 2 4Energy (eV)
Figure 1 | Density function theory calculation studies of O-terminated Ti3C2. (a) The side and top views of the structure model for a 4 4 1
O-terminated Ti3C2 supercell. Grey, red and cyan spheres denote C, O and Ti atoms, respectively. (b) The calculated free-energy diagram of HER at the equilibrium potential (U 0 V) on the surface of a 2 2 1 O-terminated Ti3C2 supercell at different H* coverage (1/8, 1/4, 3/8, 1/2, 5/8 and 3/4)
conditions (the side and top views of a 2 2 1 O-terminated Ti3C2 supercell at 1/2 H* coverage are shown in the inset). (c) The calculated free-energy
diagram of HER at the equilibrium potential (U 0 V) on the surface of a 2 2 1 O-terminated Ti3C2 supercell at 1/2 H* coverage, and the referenced Pt
(ref. 21,22) MoS2 (ref. 23), and WS2 (ref. 23). (d) The calculated band structure of O-terminated Ti3C2. (e) The total density of states (TDOS) and partial density of states (PDOS) for O-terminated Ti3C2.
Design and synthesis of Ti3C2-incorporated CdS. The above theoretical investigations provide clear guidance to synthesize Ti3C2 co-catalyst and couple it with photocatalysts. Firstly, we need to obtain Ti3C2 terminated with abundant functionalities instead of pure Ti3C2. Then, we should minimize and maximize the number of F and O terminations on Ti3C2, respectively. To achieve this goal, as presented in Supplementary Fig. 5, Ti3AlC2 (MAX phase) powders were rstly etched by HF to
remove Al species, producing exfoliated Ti3C2 (Ti3C2-E) with an accordion-like architecture (Supplementary Fig. 6a). During the etching process, Ti3C2-E was spontaneously decorated with substantial functionalities (OH, F and O) on its surface, giving rise to its exceptional hydrophilicity. The transformation from Ti3AlC2 to Ti3C2 is rmly evidenced by the obvious shift of the (002) and (004) X-ray diffraction (XRD) peaks to lower degrees, and the disappearance of the strongest diffraction peak of
NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 3
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907
Ti3AlC2 at 39 (Supplementary Fig. 7)24. To further increase the surface area and functionalities of Ti3C2, Ti3C2-E was added to de-ionized water and subjected to strong ultra-sonication, during which many large Ti3C2-E sheets were cut into small pieces of
Ti3C2 NPs. The resulting suspension was centrifuged at 10,000 r.p.m. to remove the large Ti3C2 sheets and particles, leaving the small Ti3C2 NPs in the supernatant (Supplementary Fig. 8a). The successful formation of Ti3C2 NPs is supported by the XRD pattern (Supplementary Fig. 7; Supplementary Note 1), high-angle annular dark-eld (HAADF) image (Supplementary Fig. 8b), energy-dispersive X-ray spectra (EDX) elemental mapping images (Supplementary Fig. 8cf), X-ray photoelectron spectroscopy (XPS) survey spectrum (Supplementary Fig. 9a), and high-resolution XPS spectra of Ti 2p, O 1s and F 1s (Supplementary Fig. 9b,c,d). The presence of abundant hydrophilic functionalities (O, OH and F) on Ti3C2 NPs is supported by the high-resolution XPS spectrum of O 1s and F 1s (Supplementary Fig. 9c,d). Meanwhile, the black colloid dispersion of Ti3C2 exhibits a typical Tyndall effect (Supplementary Fig. 8a, inset), reasonably suggesting the formation of a homogeneous dispersion of Ti3C2 NPs. The engineering of three-dimensional (3D) Ti3C2-E into zero-dimensional (0D) Ti3C2 NPs dramatically increased their surface area and functionalities, thus greatly favoring their intimate coupling with photocatalysts.
Then, CdS was selected as the photocatalyst to couple with Ti3C2, since its reported conduction band (CB) potential ( 0.7 V
versus SHE)25 is much more negative than the EF of O-terminated Ti3C2 (1.88 V versus SHE). Besides, to obtain the desired functionalities on Ti3C2, a hydrothermal strategy is applied to integrate CdS with Ti3C2 NPs. So the F terminations can be replaced by O or OH in the aqueous environment during hydrothermal treatment. The synthesis process is shown in Supplementary Fig. 10. Ti3C2 NPs were rstly introduced into
Cd(Ac)2 aqueous solution, in which Cd2 cations were easily adsorbed on numerous -O terminations. Then, an organic sulfur source, thiourea, was added into the above suspension and coordinated with Cd2 . Finally, the resulting suspension was subjected to hydrothermal treatment. During this process, most of the F terminations on Ti3C2 NPs were replaced by O/OH terminations, and thiourea molecules decomposed to gradually release S2 anions into the solution. These S2 anions were combined with the Cd2 cations adsorbed on the surface of
Ti3C2 NPs, leading to the heterogeneous nucleation and growth of CdS NPs on Ti3C2 NPs. Meanwhile, the excessive Cd2 cations were also combined with these S2 anions, resulting in the homogeneous nucleation and growth of pure CdS NPs. Then both CdS/Ti3C2 nanocomposites and CdS NPs self-assembled to form a large cauliower-structured CdS/Ti3C2 sub-microsphere (SMS), with Ti3C2 NPs intimately coupled. The nominal mass ratios of Ti3C2 to CdS were 0, 0.05, 0.1, 2.5, 5 and7.5 wt.%, and the resulting samples were labelled as CT0, CT0.05, CT0.1, CT2.5, CT5 and CT7.5, respectively. The actual mass ratios of the synthesized samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) (Supplementary Table 2).
Chemical composition and morphology. The chemical composition and morphology of the as-prepared samples were thoroughly investigated. Firstly, their crystal structures were characterized by XRD. The XRD patterns (Supplementary Fig. 11a) conrm that all the samples are composed of hexagonal wurtzite-structured phase CdS (JCPDS No. 77-2306). A combination of Ti3C2 NPs with CdS did not affect the crystal structure of CdS, suggesting that the remarkable increase in
photocatalytic activity is not caused by any crystal structure alteration in CdS. Instead, it should be attributed to the Ti3C2
NPs deposited on its surface. However, no diffraction peaks for Ti3C2 are observed in Supplementary Fig. 11a, probably due to the low loading and high dispersion of Ti3C2 NPs on the surface of CdS.
The morphology and composition of the as-synthesized CT2.5 were further investigated by HAADF, EDX, high-resolution (HR)TEM, SEM and XPS techniques. The HAADF image of CT2.5 in Fig. 2a show that several NPs are deposited on the surface of CdS SMS, which is quite different from the smooth surface of pure CdS SMS (CT0) displayed in Supplementary Fig. 12a,b. The composition of these NPs was in situ studied by EDX and HRTEM. Firstly, three points of O2, O3 and O4 at these
NPs were selected for EDX analysis, respectively. The results in Fig. 2b and Supplementary Fig. 13b,c exhibit that Ti peaks were found, while no Cd or S peaks were observed at O2, O3 and O4, suggesting that these NPs are not CdS but Ti-containing material. The HRTEM image near the O3 point (Fig. 2c) shows a hetero-interface with lattice spacings of 1 and 0.36 nm, which are assigned to the (002) plane of Ti3C2 (ref. 24) and (100) plane of
CdS26, respectively. This result conrms the formation of CdS/Ti3C2 hetero-junction. Furthermore, the SEM image of
CT2.5 in Fig. 2d shows a uniform SMS structure of CdS/Ti3C2
with sizes of ca. 400500 nm. A detailed observation in Fig. 2d suggests that CdS/Ti3C2 SMS has a cauliower-structured morphology created by the self-assembly of many NPs27. The corresponding EDX spectrum in Fig. 2e indicates that CT2.5 contains Cd, S, Ti and C, which is consistent with the HRTEM image and EDX spectra. The above results support the establishment of intimate coupling between Ti3C2 and CdS, implying the efcient interfacial photo-induced charge diffusion on visible-light irradiation7,28. Moreover, the high-resolution XPS spectrum of Ti 2p exhibits four deconvoluted peaks in Fig. 2f, corresponding to TiO 2p and TiC 2p24, in agreement with the above HRTEM and EDX results. It should be noted that numerous O terminations are present in CT2.5 (Fig. 2g), while the F content is negligible for CT2.5 (Fig. 2h), suggesting the successful replacement of F by O/OH on Ti3C2 NPs after hydrothermal treatment. Thus, the ratio of F to O in CT2.5 is zero.
Super high photocatalytic H2-production performance. The photocatalytic H2-production activity of all the as-prepared samples was examined in 18 vol.% lactic acid aqueous solution under visible-light irradiation (lZ420 nm). Excitingly, the coupling of Ti3C2 NPs with CdS indeed leads to a remarkable enhancement in the photocatalytic activity. As displayed in Fig. 3a, pristine CdS (CT0) shows a very low photocatalytic activity of 105 mmol h 1 g 1. In contrast, the loading of a small amount of Ti3C2 NPs (0.05 wt.%) obviously improves the photocatalytic activity of CT0.05 to 993 mmol h 1g 1.
With increasing amount of Ti3C2 NPs, the photocatalytic activity of Ti3C2-loaded CdS is gradually enhanced. Surprisingly, a super high photocatalytic H2-production activity of 14,342 mmol h 1 g 1 is achieved on CT2.5, exceeding that of
CT0 by an amazing factor of 136.6. In comparison, for the same loading (2.5 wt.%) and experimental conditions, NiS, Ni and MoS2-loaded CdS SMS (NiSCdS, NiCdS and MoS2CdS)
exhibit lower photocatalytic activities of 12,953, 8,649 and 6,183 mmol h 1 g 1, respectively (Fig. 3a). Besides, CT2.5 also shows higher quantum efciency (40.1% at 420 nm) than the other noble-metal-free CdS-based photocatalysts reported to date, such as: Ni/CdS, Ni(OH)2/CdS, Ni2P/CdS, CoP/CdS, graphene oxide/CdS and MoS2/CdS (Supplementary Table 3). On the basis
4 NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907 ARTICLE
a
b
O3
O1
C
O Ti
O4
O6
CPS
Ti
O5
O2
0 1 2 3 4 5 6
Energy (keV)
O3 point
c
d CT2.5
e
CT2.5
d = 1.0 nm
Ti3C2 (002)
Cd
Cd
Cd
Cd Ti
S
C
O
CPS
d = 0.36 nm
CdS (100)
Cd
0 1 2 3 4 5 6
Energy (keV)
f
g
h
Ti 2p of CT2.5
O 1s of CT2.5
F1s region in CT2.5
681 684 687 690 693 696 Binding energy (eV)
TiO 2p
458.4 eV
TiC 2p
459.9 eV
Binding energy (eV)
Intensity (a.u.)
TiC 2p
454.5 eV
Intensity (a.u.)
Intensity (a.u.)
TiO 2p
464.1 eV
TiO 529.2 eV
Adsorbed O 531.9 eV
Adsorbed H O 533.6 eV
456 459 462 465 468
528 530 532 534 536
Binding energy (eV)
Figure 2 | Morphology and chemical composition of CT2.5. (a) A typical high-angle annular dark-eld (HAADF) image of CT2.5 and the six different points (O1, O2, O3, O4, O5 and O6) for EDX analysis. (b) The EDX spectrum at O3 point in a. (c) The high-resolution TEM image near O3 point in a.
(d,e) A typical SEM image of CT2.5 and its corresponding EDX spectrum. (fh) The high-resolution XPS spectra of Ti 2p, O 1s and F 1s for CT2.5. Scale bars, 200 nm (a), 2 nm (c) and 500 nm (d).
of the above experimental data and literature, Ti3C2 NPs have proven to be one of the most active earth-abundant co-catalysts. Furthermore, CT2.5 even displays higher activity than 2.5 wt.% Pt loaded CdS SMS (PtCdS, 10,978 mmol h 1g 1), even though Pt is widely accepted as the most active co-catalyst promoting H2 production. The HAADF image, EDX elemental mapping images, TEM and HRTEM images of PtCdS (Supplementary Fig. 14af) imply that Pt is homogeneously decorated on CdS in the form of clusters (Supplementary Note 2). The size of Pt in PtCdS is much smaller than that of Ti3C2 in CT2.5, suggesting more active sites exposed on Pt than those on Ti3C2 for the same loading. In this case, the superior activity of CT2.5 should be ascribed to the much stronger combination between CdS and Ti3C2 established during hydrothermal treatment, which greatly facilitates the rapid interfacial charge transfer7,28. This result also highlights the huge potential of Ti3C2 NPs as a high performance and low-cost co-
catalyst to replace Pt. However, further increase in the loading of Ti3C2 NPs leads to the drastic deterioration of photocatalytic activity as reported in previous works6,7,28,29. This is due to the excessive Ti3C2 NPs covering the surface active sites and impeding the light absorption of CdS. Nevertheless, CT7.5 still retains a photocatalytic activity of 2,707 mmol h 1g 1, much higher than that of CT0. In addition, Ti3C2 NPs show no activity toward H2 production under visible-light irradiation, further supporting its role as a co-catalyst rather than a photocatalyst.
The stability of the optimized CT2.5 was further evaluated by performing the photocatalytic experiments under the same reaction conditions for seven cycles. No signicant deterioration of photocatalytic activity was observed for CT2.5 during seven successive cycling tests for H2 production (Supplementary
Fig. 15a). A comparison of the crystalline phase (Supplementary Fig. 11a), morphology and size (Fig. 2a and
NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 5
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907
a
b
18,000
1.6
0.0
14,342
3,377
2,707
Nil
10,978
Ti3C2-E
CT2.5
1 g1 )
15,000
12,953
8,649
6.0
0.0
1.2
12,000
H 2production rate (mol h
Absorbance (a.u.)
4.5
Ti3C2-E
Absorbance (a.u.)
3.0
9,000
0.8
1.5
6,183
6,000
CT2.5
300 400 500 600 700 800
0.4
Wavelength (nm)
3,000
CT0
557 nm
105
993 1,278
CT0
CT5
CT2.5
CT0.1
0 CT0.05
CT0
Pt-CdS Ti 3C 2 NPs
CT7.5
MoS 2-CdS
Ni-CdS
NiS-CdS
c
d
2,250
1,500
750
0
50
40
30
20
10
0
0 10 20 30 40 50
CT0 CT2.5
[afii9848]1 = 1.54 ns (51.5%) [afii9848]2 = 5.60 ns (48.5%)
Ave. = 4.68 ns
[afii9848]1 = 0.61 ns (60.1%) [afii9848]2 = 4.64 ns (39.9%)
Ave. [afii9848] = 3.98 ns
RS Rt
CPE
PL intensity (a.u.)
Rt = 100.6 k
Z(k)
0.60
0.40
0.20
0.00
0
CT2.5
Rt = 25.6 k
CT0
50 100 150 200
Time (s)
CT0
Fitting curve Fitting curve
CT2.5
10 15 20 25 30 35
400 500 600 700 800Wavelength (nm)
Samples
Time (ns)
Z (k)
Figure 3 | Photocatalytic performance and spectroscopy/(photo)electrochemical characterization. (a) A comparison of the photocatalytic H2-production activities of CT0, CT0.05, CT0.1, CT2.5, CT5, CT7.5, Ti3C2 NPs, PtCdS, NiSCdS, NiCdS and MoS2CdS. The error bars are dened as s.d.
(b) Ultraviolet-visible diffuse reectance spectra of CT0, CT2.5 and Ti3C2-E. The insets show the colours of all the samples as well as the ultraviolet-visible absorbance spectrum and picture of the Ti3C2 NPs aqueous solution. (c) Time-resolved PL spectra of CT0 and CT2.5. (d) EIS Nyquist plots of CT0 and CT2.5 electrodes measured under the open-circle potential and visible-light irradiation in 0.5 M potassium phosphate buffer (pH 7) solution. The inset
shows the transient photocurrent responses of CT0 and CT2.5 electrodes in 0.2 M Na2S 0.04 M Na2SO3 mixed aqueous solution under visible-light
irradiation.
Supplementary Fig. 15b) between the original and used CT2.5 (CT2.5-A) shows no apparent alterations in CT2.5-A, which is in accordance to its repeated high activity.
Light-harvesting capability. To investigate the origin of the remarkable activity of CT2.5, its properties governing the three major processes in photocatalytic reactions (that is, light absorption, charge separation and transfer, and surface redox reactions1,46) were thoroughly characterized. Firstly, the light-harvesting capability of CT2.5 was measured by the ultraviolet-visible diffuse reectance spectra. As displayed in Fig. 3b, the light absorption of CT2.5 is obviously increased throughout the entire region of 350800 nm, due to the black colour of loaded Ti3C2
NPs (Fig. 3b, inset). Similar phenomenon is also observed for CT0.05, CT0.1, CT5 and CT7.5 (Supplementary Fig. 11b). The ultraviolet-visible absorbance spectrum of the Ti3C2 NPs aqueous solution shows no obvious absorption edge in the 250800 nm region, implying the metallic nature of Ti3C2 NPs. Furthermore, no apparent shift in the absorption edge of CT2.5 is observed, indicating that Ti, C, F or O element is not doped into the crystal structure of CdS, which is in agreement with the above XRD data. To investigate whether the increased visible-light absorption
originating from Ti3C2 NPs enhanced the photocatalytic activity of CT2.5, a 560 nm light lter was employed to cutoff any irradiation light with wavelength shorter than 557 nm (the onset absorption edge of CdS in CT2.5), while other experimental conditions were kept identical. Under such conditions, CT2.5 shows no activity for H2 production, indicating that the enhanced visible-light absorption arising from Ti3C2 NPs is unlikely to promote the activity enhancement observed for CT2.5.
Charge separation and transfer. To study the charge-carrier separation and transfer efciency in CT2.5, a series of characterization techniques including time-resolved and steady-state photoluminescence (PL) spectra, electrochemical impedance spectra (EIS) and transient photocurrent (TPC) response were used. As shown in Fig. 3c, in comparison to CT0, CT2.5 shows an increased short (t1), long (t2) and intensity-average (t) PL lifetimes, indicating that the deposition of Ti3C2 on CdS can effectively suppress the charge recombination and elongate the lifetime of charge carriers. The enhanced charge separation efciency is further conrmed by the quenched emission peak around 560 nm for CT2.5 (Supplementary Fig. 16). Furthermore, the surface and bulk charge-transfer efciencies were investigated
6 NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907 ARTICLE
by the EIS and TPC density measurements, respectively. As indicated in Fig. 3d, CT2.5 shows a much smaller semicircle diameter and a much lower interfacial charge-transfer resistance than those of CT0 in potassium phosphate buffer solution (pH 7) under visible-light irradiation, suggesting the apparent
enhancement of interfacial charge-carrier transfer on the surface of CdS/Ti3C2. On the other hand, to study the bulk charge transfer in CT0 and CT2.5, the TPC density measurements were conducted. Na2S and Na2SO3 were applied as electrolytes to rapidly capture the photo-induced holes on the surface of CT0 and CT2.5. Thus, these hole scavengers were supposed to eliminate the surface charge recombination on CT0 and CT2.5. In such a case, the observed enhancement in the TPC density on loading of Ti3C2 (Fig. 3d, inset) directly reects an improved charge separation efciency in the bulk of CdS/Ti3C2.
To gain further insights into the charge separation and transfer mechanism in CT2.5, the CB and valence band (VB) potentials of CdS in CT2.5 were determined to be 0.79 V and 1.54 V versus
SHE, respectively, by a combination of Mott-Schottky and Tauc plots (Supplementary Fig. 17a,b). Hence, on light irradiation, the photo-induced electrons on the CB of CdS (ECB 0.79 V versus SHE) in CT2.5 can promptly migrate to
O-terminated Ti3C2 NPs, which rapidly shuttle these photo-induced electrons to their surface active sites, because of their low EF position and excellent conductivity. Therefore, in the case of CT2.5, Ti3C2 can serve as an electron trapping and shuttling site not only to suppress the charge recombination on the surface of CdS, but also to promote the charge separation and transfer in the bulk of CdS, which is consistent with the above results.
Surface catalytic redox reactions. Following the charge separation and transfer, the last step in photocatalytic H2 production includes the surface redox reactions catalysed by the reactive sites on CT2.5. Therefore, to study the efciency of the last step, we determined the specic surface area and pore volume of all the samples by N2 sorption analysis (Supplementary Fig. 18a,b). As shown in Supplementary Table 2, an initial increase in the loading of Ti3C2 NPs up to 1.89 wt.% (CT0.05, CT0.1 and CT2.5)
caused a gradual enlargement in the specic surface area of the CdS/Ti3C2 composites. However, further increase in the loading of Ti3C2 NPs resulted in a noticeable decrease in surface area to3.8 and 3.7 m2 g 1 for CT5 and CT7.5, respectively, despite that Ti3C2 NPs exhibit a large surface area of 120.1 m2g 1 (Supplementary Table 4). This decrease is observed at higher loadings of Ti3C2 NPs because of their tendency to aggregate on the surface of CdS SMS. Hence, the highest surface area of CT2.5 among all the CdS/Ti3C2 composites suggests the existence of abundant active sites on its surface, which greatly promote the surface redox catalytic reactions. Moreover, the polarization curves of CT0, CT2.5 and Ti3C2 NPs (Supplementary Fig. 19)
indicate that the presence of Ti3C2 NPs on the surface of CdS can greatly improve the HER activity of CT2.5, and consequently, contribute to its enhanced photocatalytic H2 production.
To further reveal the differences in HER mechanistic behaviour between Ti3C2 and other state-of-the-art earth-abundant HER catalysts, for example, MoS2 and WS2, DFT calculations were conducted to study the effect of H2 coverage on DGH* for O-terminated Ti3C2. Fig. 1b shows that one O-terminated Ti3C2 unit cell tends to allow for adsorption of four H* due to its smallest |DGH*| (Supplementary Note 3), corresponding to the unsaturated H* coverage of y 1/2. The |DGH*| values for the
adsorption of H* on O-terminated Ti3C2 at y values below 1/2 (that is, y 1/8, 1/4 and 3/8) are relatively low (Supplementary
Table 1). However, the further increase of H* coverage results in a rapid increase of |DGH*| and deterioration of HER activity
(Fig. 1b; Supplementary Table 1). Nevertheless, O-terminated Ti3C2 still possesses a relatively large number of HER active sites considering its large surface with numerous active sites. In comparison, the HER active sites of well-known MoS2 and WS2 are only located at the edge positions, while all the sites in the basal plane are inactive30, suggesting the superiority of this newly developed O-terminated Ti3C2.
Photocatalytic H2-production mechanism and discussion. To gain an insight into the inuence of intrinsic properties of Ti3C2
on the photocatalytic activity of the CdS/Ti3C2 composite, a series of experiments were designed and conducted. Firstly, the effect of co-catalysts surface area on the activity was studied. Co-catalysts Ti3C2-E, Ti3C2-5000 and Ti3C2 NPs with different sizes (Supplementary Figs 6a, 8a and 20) and corresponding surface areas (Supplementary Table 4) were respectively coupled with CdS at the same loading (2.5 wt.%) under identical hydrothermal conditions. As shown in Fig. 4a, loading Ti3C2-E, Ti3C2-5000 and
Ti3C2 NPs with increasing surface area leads to gradually enhanced photocatalytic activities. This is because the smaller size and larger number of exposed active sites of Ti3C2 not only result in stronger coupling with CdS, but also assure better access to reactants. Secondly, the inuence of functionalities of co-catalyst on the activity of CdS/Ti3C2 was investigated. Ti3C2 NPs were subjected to a hydrothermal treatment to reduce the number of F terminations. The surface atomic ratio of F to O, estimated by XPS analysis, for Ti3C2 NPs and hydrothermally treated Ti3C2
NPs (HT-Ti3C2 NPs) are 20.6% and 8.0%, respectively. This implies that a large number of the -F terminations were exchanged into O/OH terminations for HT-Ti3C2 NPs during hydrothermal treatment. Then Ti3C2 NPs and HT-Ti3C2 NPs were mechanically mixed with CT0 at the same loading(2.5 wt.%), respectively. Figure 4b displays that HT-Ti3C2 NPs
induce a higher photocatalytic activity of 1,527 mmol h 1 g 1 than Ti3C2 NPs (1,105 mmol h 1g 1), even though the surface area of HT-Ti3C2 NPs (56.7 m2 g 1) is much lower than that of
Ti3C2 NPs (120.1 m2g 1) as shown in Supplementary Table 4. The reason for this is that the replacement of F by O/OH on Ti3C2 NPs increases the density of effective active sites (O terminations), despite the decreased surface area after hydrothermal treatment. This result coincides with the above DFT calculation data of DGH* on O-terminated and F-terminated
Ti3C2.
On the basis of the above experimental results and theoretical calculations, a photocatalytic mechanism illustrating the surprisingly high photocatalytic H2-production activity of CT2.5 is proposed in Fig. 4c,d. Since the original EF of n-type CdS (slightly lower than its CB position of 0.91 V versus SHE) is much more
negative than the original EF of O-terminated Ti3C2 (1.88 V versus SHE), the intimate contact between CdS and Ti3C2 in
CT2.5 leads to the electron transfer from CdS to Ti3C2
(Supplementary Note 4), accompanied by the rise of EF for Ti3C2 above the hydrogen evolution potential (0.00 V versus SHE) and the equilibrium of EF in CdS/Ti3C2 system. The similar phenomenon was reported by Jakob et al.31. Moreover, the CB position of CdS in CT2.5 is also lowered to 0.79 V versus SHE
as conrmed in Supplementary Fig. 17a. Meanwhile, the immobilized positive charges remain in CdS near the CdS/Ti3C2 interface, where a space charge layer is formed, and the CB and VB of CdS are bent upward. Hence, a Schottky junction is formed between Ti3C2 and CdS. On visible-light (lZ420 nm) irradiation, the electrons are excited from the VB to the CB of CdS. Due to the reduced space charge layer thickness in nano-sized CdS primary particles, the upward bending of the CB and VB for CdS is also limited (Fig. 4c)32. Hence, the photo-
NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 7
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907
a b
20,000
200
5,000
25
H production rate H production rate
BET surface area Atomic ratio (F to O)
1,105
1 g1 )
1 g1 )
20.6
14,342
120.1
4,000
20
H 2 production rate (mol h
H 2 production rate (mol h
15,000
150
10,000
BET surface area (m2 g1 )
Atomic ratio of F to O (%)
3,000
15
100
2,000
10
61.6
1,527 8.0
39.6 3,493
50
5,000
1,000
5
442
0
0
0 Ti3C2-E
Ti3C2-5000
Ti3C2 NPs
0 Ti3C2 NPs
HT-Ti3C2 NPs
Co-catalyst
(ii) Rapid charge shuttling
(iii) Efficient H2 evolution
Visible light ([afii9838] 420 nm)
Co-catalyst
c
d
2.5
2.0
(i) Schottky barrier
Potential versus SHE (V)
Ox product
Lactic acid
H2
CB
1.5
1.0
0.79 V
H2
0.5
EF
H+/H2 0.0 V
EF H+
0.0
e
0.5
Visible light ([afii9838] 420 nm)
Ti3C2
1.0
1.5
Lactic acid
1.54 V
+
+
+
+
2.0
Ox product
VB
CdS
H+
2.5
(pH = 0)
H+ H C O S Ti Cd
Space charge layer (upward band bending)
Figure 4 | Origin and mechanism of the enhanced photocatalytic performance in CdS/Ti3C2 system. (a) The inuence of the co-catalysts surface area on the photocatalytic activity. The error bars are dened as s.d. (b) The inuence of the co-catalysts surface F to O atomic ratio on the photocatalytic activity. The error bars are dened as s.d. (c) The charge separation and transfer in the CdS/Ti3C2 system under visible-light irradiation. Red and blue spheres denote photo-induced electrons and holes, respectively. (d) Proposed mechanism for photocatalytic H2 production in the CdS/Ti3C2 system under visible-light illumination. Green sphere denotes H . White, grey, red, yellow, cyan and gold spheres denote H, C, O, S, Ti and Cd atoms, respectively.
induced electrons in the CB can still migrate across the upward bent CB to the Fermi level of Ti3C2, leaving the photo-induced holes in the VB of CdS. As a result, the Schottky junction can serve as an electron trap to efciently capture the photo-induced electrons, without impeding the electron transfer from CdS to Ti3C2, as reported in previous works3335. After being transferred to Ti3C2, the photo-induced electrons are further rapidly shuttled to its surface, due to the excellent metallic conductivity. Finally, thanks to the outstanding HER capacity of Ti3C2, the protons in the aqueous solution are efciently reduced by the photo-induced electrons at the abundant O terminations on Ti3C2 to evolve H2 gas. Therefore, through tuning the number and type of surface functionalities on Ti3C2, one can achieve the desirable EF and optimize the HER activity for Ti3C2, which imposes a pronounced synergetic enhancement effect on the photocatalytic activity of the CdS/Ti3C2 system.
The potential of this newly developed co-catalyst can be further exploited by a co-loading strategy. For instance, a p-type semiconductor NiS could be simultaneously loaded with Ti3C2
NPs on CdS SMS. Surprisingly, the photocatalytic activity of CdS/1 mol.% NiS/2.5 wt.% Ti3C2 (CNT2.5) was further increased to 18,560 mmol h 1 g 1 as presented in Supplementary Fig. 21a.
This is because the combination of p-type NiS with n-type CdS results in the formation of a pn junction, which promotes the transfer of photo-induced holes from CdS to NiS. Meanwhile, the photo-induced electrons are rapidly extracted from CdS to Ti3C2
NPs for H2 evolution. Therefore, the co-loading strategy imposes a strong synergistic effect on the charge separation and transfer in CNT2.5, which is conrmed by combined techniques of PL spectra (Supplementary Fig. 22a) and TPC response (Supplementary Fig. 22b). These results demonstrate the great potential of co-loading Ti3C2 with other co-catalysts to achieve synergetic enhancement of photocatalytic activity.
Ti3C2 as a versatile HER co-catalyst. To verify that the Ti3C2 NPs can act as a versatile HER co-catalyst on different photo-catalysts, we mechanically mixed Ti3C2 NPs with ZnxCd1 xS and
ZnS respectively, and tested the photocatalytic H2-production activity of the resultant mixtures. As shown in Supplementary Figs 23a and 24a, a simple mechanical mixing of Zn0.8Cd0.2S
(ZCS) and ZnS with 1 wt.% Ti3C2 NPs increased the photo-catalytic activities of the formed composites ZCS/Ti3C2 and
ZnS/Ti3C2 by 386 and 217%, respectively, as compared with that of pristine ZCS and ZnS. This exciting nding clearly shows an enormous potential in coupling Ti3C2 NPs with a wide variety of semiconductor photocatalysts/photoelectrodes.
DiscussionThis work demonstrates the great advantage of using modern theoretical tools for the design and synthesis of a novel MXene material, Ti3C2 NPs, as a highly active co-catalyst. On the basis of
8 NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907 ARTICLE
the theoretical predictions, we rationally employed the hydro-thermal treatment to replace the F terminations on Ti3C2
by O/OH terminations, and coupled the pretreated Ti3C2
with CdS to prepare a highly fused CdS/Ti3C2 composite photocatalyst. Remarkably, this composite photocatalyst exhibited both super high visible-light photocatalytic activity (14,342 mmol h 1 g 1) and apparent quantum efciency(40.1% at 420 nm), rendering it as one of the best noble-metal-free metal-suldes photocatalysts. By combining the rst-principle calculations and experimental methodology, we found that this unusual activity can be attributed to the synergetic effect of the highly efcient charge separation and migration from CdS to Ti3C2 NPs and the rapid H2 evolution on numerous O terminations present on Ti3C2 NPs. Successful application of Ti3C2 NPs as an efcient co-catalyst on ZnS or ZCS excitingly conrms the versatile nature of this newly developed co-catalyst. This study opens a new area of utilizing this new generation of co-catalytic materials, MXene, to achieve highly efcient, steady and cost-effective solar water splitting based on semiconductor photocatalysts/photoelectrodes.
Methods
Materials synthesis. Ti3AlC2 (MAX phase: Mn1AXn, where M indicates early
transition metal, A indicates III A or IV A group element, and X indicates C or N) was synthesized following the approach reported by Peng et al.36. Ti3C2-E was prepared by immersing Ti3AlC2 in HF solution. Ti3C2 NPs were fabricated by ultra-sonication of Ti3C2-E in de-ionized water. The detailed synthesis procedures of Ti3AlC2, Ti3C2-E and Ti3C2 NPs are described in Supplementary Methods. The CdS/Ti3C2 composites were fabricated by a one-step hydrothermal method summarized in Supplementary Methods. PtCdS was synthesized by in situ photo-deposition of 2.5 wt.% Pt on CT0 using H2PtCl6 aqueous solution. Pt NPs loaded
CT0 (PtCdS-1) was synthesized by mixing 2.5 wt% Pt NPs with CT0 in ultrasonication followed by washing with ethanol and dried at 60 C. The morphology (Supplementary Fig. 25a) and photocatalytic activity (Supplementary Fig. 26) of PtCdS-1 are discussed in Supplementary Note 5. The above Pt NPs (Supplementary Fig. 27) was synthesized by a chemical-reduction method summarized in Supplementary Methods. NiSCdS was synthesized following the previosuly reported method37 using CT0 as the substrate with 2.5 wt% loading of NiS. NiCdS was synthesized by in situ photo-deposition of 2.5 wt% Ni on CT0 using Ni(NO3)2 aqueous solution. MoS2CdS was synthesized by the previously reported method38 using CT0 as the substrate with 2.5 wt% loading of MoS2. Ti3C2-5000 was synthesized following the preparation method of Ti3C2 NPs except that the nal product was obtained by centrifugation at 5,000 r.p.m. CT2.5-5000 was prepared following the preparation method of CT2.5 except that Ti3C2-5000 was used instead of Ti3C2 NPs. HT-Ti3C2 NPs were synthesized following the hydrothermal method for preparation of CT2.5 except that no Cd(Ac)2 was added. CT2.5-A was acquired after the repeated photocatalytic reaction of CT2.5 for 28 h. Overall, 1 mol% NiS loaded CT0 (CN) was synthezised by following the previously reported method39. CNT2.5 was synthesized by a one-step hydrothermal method as summarized in Supplementary Methods. The phase structures (Supplementary Fig. 21b) and optical properties (Supplementary Fig. 21c) of CN and CNT2.5 are discussed in Supplementary Note 6. ZCS was synthesized by the previously reported method39. ZCS/Ti3C2 was synthesized by mechanical mixing of the as-synthesized ZCS with 1 wt.% Ti3C2 NPs. The phase structures (Supplementary Fig. 23b) and optical properties (Supplementary Fig. 23c) of ZCS and ZCS/Ti3C2
are discussed in Supplementary Note 7. ZnS was prepared by a hydrothermal approach as summarized in Supplementary Methods. ZnS/Ti3C2 was prepared by mechanical mixing of the as-synthesized ZnS with 1 wt.% Ti3C2 NPs. The phase structures (Supplementary Fig. 24b) and optical properties (SupplementaryFig. 24c) of ZnS and ZnS/Ti3C2 are discussed in Supplementary Note 8.
Physicochemical characterization. XRD patterns were acquired on a powder X-ray diffractometer (Miniex, Rigaku) using Cu-Ka radiation at 40 kV and15 mA. SEM images and EDX spectra were collected on FEI Quanta 450 at an accelerating voltage of 10 kV. HAADF, TEM, HRTEM images and EDX were performed by utilizing a JEM-2100F electron microscope (JEOL, Japan). XPS measurements were conducted using an Axis Ultra (Kratos Analytical, UK) XPS spectrometer equipped with an Al Ka source (1,486.6 eV). The F/O atomic ratios in all the CdS/Ti3C2 composites were examined by XPS technique (Supplementary
Fig. 28) and discussed in Supplementary Note 9. The BrunauerEmmettTeller specic surface areas (SBET) and pore volume (PV) of the samples were evaluated by N2 adsorption on a Tristar II 3020 gas adsorption apparatus (Micromeritics, USA). Ultraviolet-visible diffuse reectance spectra were collected for the dry-pressed disk samples with an ultraviolet-visible spectrophotometer (UV2600, Shimadzu, Japan) using BaSO4 as the reectance standard. PL spectra were
recorded on a RF-5301PC spectrouorophotometer (Shimadzu, Japan) at room temperature. Time-resolved PL decay curves were obtained on a FLS920 uorescence lifetime spectrophotometer (Edinburgh Instruments, UK) under the excitation of 365 nm and probed at 460 nm. The actual chemical compositions of the as-synthesized samples were measured by ICP-AES using an Optima 4300 DV spectrometer (PerkinElmer) (Supplementary Table 2).
Theoretical calculations. The DFT calculations were carried out by using the Vienna ab initio simulation package (VASP)40,41. The exchange-correlation interaction is described by generalized gradient approximation (GGA) with the PerdewBurkeErnzerhof (PBE) functional42. Van der Waals correction was applied in all calculations. The energy cutoff was set to 500 eV. The Brillouin zone was sampled by a Monkhorst-Pack 9 9 1 K-point grid. The fully relaxed lattice
constants of Ti3C2, O-terminated Ti3C2 and F-terminated Ti3C2 monolayers are3.08, 3.01 and 3.02 respectively. The models of Ti3C2, O-terminated Ti3C2 or F-terminated Ti3C2 in 2 2 1 supercells with a k-point of 5 5 1 grid in
reciprocal space are used to identify the HER activity sites. HSE06 calculations43,44 employing VASP are performed to get the exact band structures. The band gap is zero. The further calculation details of the Gibbs free energy of the absorption of atomic H, the Fermi level positions and the surface Pourbaix diagrams can be found in Supplementary Methods. The surface Pourbaix diagram (Supplementary Fig. 29) of Ti3C2 is analysed and discussed in Supplementary Note 10. The excellent conductivity of O-terminated Ti3C2 at different H coverages (SupplementaryFig. 30) is conrmed in Supplementary Note 11.
Photocatalytic H2-production test. The experimental measurements of photo-catalytic H2 production were carried out in a 100 ml Pyrex ask (openings sealed with silicone rubber septum) at room temperature and atmospheric pressure. A 300 W Xenon arc lamp with an ultraviolet-cutoff lter (lZ420 nm) was utilized as a visible-light source to trigger the photocatalytic reaction. The focused intensity on the ask was ca. 80 mW cm 2. Typically, 20 mg of the photocatalyst was suspended by constant stirring in 80 ml of mixed aqueous solution containing 20 ml of lactic acid (88 vol%) and 60 ml of water. Before irradiation, the suspension was purged with Argon for 0.5 h to remove any dissolved air and keep the reaction system under anaerobic conditions. Next, 0.2 ml gas was intermittently sampled through the septum, and H2 content was analysed by gas chromatograph (Clarus 480, PerkinElmer, USA, TCD, Ar as a carrier gas and 5 molecular sieve column). Before the experiment, all glassware was rinsed carefully with de-ionized water. The apparent quantum efciency (QE) was measured under the identical photocatalytic reactions. Four low power 420-nm LEDs (3 W, Shenzhen LAMPLIC Science Co Ltd. China) were employed as the light sources to trigger the photocatalytic reactions. The focused intensity for every 420-nm LED was ca. 6 mW cm 2.
The QE was calculated according to the following equation (1):
QE%
Number of reacted electrons Number of incident photons 100
Number of evolved H2molecules 2
Number of incident photons 100
1
Electrochemical and photoelectrochemical measurements. EIS measurements were performed on an electrochemical analyser (CHI650D instruments) in a standard three-electrode system utilizing the synthesized samples as the working electrodes, Ag/AgCl (saturated KCl) as a reference electrode, and a Pt wire as the counter electrode. The polarization curves were recorded in the above-mentioned three-electrode system and the bias sweep range was from 1.5 to 0.8 V versus
Ag/AgCl with a step size of 0.005 V. 0.5 M Na2SO4 aqueous solution was utilized as the electrolyte. The Mott-Schottky plots were also measured using the same three-electrode system over an alternating current (AC) frequency of 1,200 Hz in 0.5 M Na2SO4 aqueous solution. The EIS were recorded over a range from 1 to 2 105 Hz
with an AC amplitude of 0.02 V. 0.5 M potassium phosphate buffer solution was used as the electrolyte. Photocurrent was measured in the same three-electrode system. A 300 W Xenon light with an ultraviolet-cutoff lter (lZ420 nm) was applied as the light source. 0.2 M Na2S and 0.04 M Na2SO3 mixed aqueous solution was used as the electrolyte. The working electrodes were synthesized as follows:0.1 g sample and 0.03 g polyethylene glycol (PEG; molecular weight: 20,000) were ground with 0.5 ml of ethanol to make a slurry. Then the slurry was coated onto a 2 cm 1.5 cm FTO glass electrode by the doctor blade approach. The obtained
electrode was dried in an oven and heated at 623 K for 0.5 h under owing N2. All working electrodes studied were kept at a similar lm thickness of about 1011 mm.
Data availability. The data that support the ndings of this study are available from the corresponding author on request.
References
1. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 75207535 (2014).
NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 9
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13907
2. Ran, J. et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy
Environ. Sci. 8, 37083717 (2015).3. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738 (1972).
4. Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 65036570 (2010).
5. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253278 (2009).
6. Ran, J. et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 77877812 (2014).
7. Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 71767177 (2008).
8. Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434438 (2011).
9. Bi, W. et al. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 6, 8647 (2015).
10. Mahler, B., Hoepfner, V., Liao, K. & Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 1412114127 (2014).
11. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563568 (2008).
12. Brown, K. A. et al. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 134, 56275636 (2012).
13. Wang, F. et al. A highly efcient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. Angew Chem. Int. Ed. 50, 31933197 (2011).
14. Khazaei, M. et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 21852192 (2013).
15. Gao, Y. et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 6264 (2015).
16. Naguib, M. et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 1596615969 (2013).
17. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 15021505 (2013).
18. Ghidiu, M. et al. Conductive two-dimensional titanium carbide clay with high volumetric capacitance. Nature 516, 7881 (2014).
19. Nrskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 3746 (2009).
20. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 20602086 (2015).
21. Nrskov, J. K. et al. Trends in the exchange current for hydrogen evolutionJ. Electrochem. Soc. 152, J23J26 (2005).22. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticlesas catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 53085309 (2005).
23. Bonde, J. et al. Hydrogen evolution on nano-particulate transition metal suldes. Farad. Discuss. 140, 219231 (2009).
24. Ma, T. Y., Cao, J. L., Jaroniec, M. & Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew Chem. Int. Ed. 55, 11381142 (2016).
25. Ran, J., Yu, J. & Jaroniec, M. Ni(OH)2 modied CdS nanorods for highly efcient visible-light-driven photocatalytic H2 generation. Green Chem. 13, 27082713 (2011).
26. Chauhan, H. et al. Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdSAu hybrid nanoplatelets and corresponding application in photocatalysis. Nanoscale 8, 1580215812 (2016).
27. Rengaraj, S. et al. Cauliower-like CdS microspheres composed of nanocrystals and their physicochemical properties. Langmuir 27, 352358 (2011).
28. Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 65756578 (2012).
29. Chang, K. et al. MoS2/graphene cocatalyst for efcient photocatalyticH2 evolution under visible light irradiation. ACS Nano 8, 70787087 (2014).
30. Jaramillo, T. F. et al. Identication of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100102 (2007).31. Jakob, M., Levanon, H. & Kamat, P. V. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett. 3, 353358 (2003).
32. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 22942320 (2013).
33. Leung, D. Y. C. et al. Hydrogen production over titania-based photocatalysts. ChemSusChem. 3, 681694 (2010).
34. Yan, H. et al. Visible-light-driven hydrogen production with extremelyhigh quantum efciency on Pt-PdS/CdS photocatalyst. J. Catal. 266, 165168 (2009).
35. Yang, J., Wang, D., Han, H. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 19001909 (2013).
36. Peng, Q. et al. Unique lead adsorption behavior of activated hydroxylgroup in two-dimensional titanium carbide. J. Am. Chem. Soc. 136, 41134116 (2014).
37. Zhang, J., Qiao, S. Z., Qi, L. & Yu, J. Fabrication of NiS modied CdS nanorod pn junction photocatalysts with enhanced visible-light photo-catalytic H2-production activity. Phys. Chem. Chem. Phys. 15, 1208812094 (2013).
38. Lang, D., Shen, T. & Xiang, Q. Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. ChemCatChem. 7, 943951 (2015).
39. Ran, J., Zhang, J., Yu, J. & Qiao, S. Z. Enhanced visible-light photocatalytic H2 production by ZnxCd1 xS modied with earth-abundant nickel-based
cocatalysts. ChemSusChem. 7, 34263434 (2014).40. Kresse, G. & Furthmller, J. Efcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996).
41. Kresse, G. & Furthmller, J. Efciency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 1550 (1996).
42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).
43. Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006).
44. Paier, J. et al. Erratum: Screened hybrid density functionals applied to solids.J. Chem. Phys. 125, 249901 (2006).
Acknowledgements
This work was supported nancially by the Australian Research Council (ARC) through the Discovery Project programme (DP160104866, DP140104062 and DP130104459).
Author contributions
J.R. and G.G. contributed equally to this work. S.-Z.Q., F.-T.L. and J.R. conceived and designed the research. J.R. synthesized photocatalysts, conducted all the experiments and wrote the paper. T.-Y.M. gave suggestions on the synthesis of photocatalysts. G.G. performed the DFT calculations, assisted by A.D. All authors discussed and analysed the data.
Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications
Web End =http://www.nature.com/ http://www.nature.com/naturecommunications
Web End =naturecommunications
Competing nancial interests: The authors declare no competing nancial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/
Web End =http://npg.nature.com/ http://npg.nature.com/reprintsandpermissions/
Web End =reprintsandpermissions/
How to cite this article: Ran, J. et al. Ti3C2 MXene co-catalyst on metal sulde photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 doi: 10.1038/ncomms13907 (2017).
Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the articles Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Web End =http://creativecommons.org/licenses/by/4.0/
r The Author(s) 2017
10 NATURE COMMUNICATIONS | 8:13907 | DOI: 10.1038/ncomms13907 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Nature Publishing Group Jan 2017
Abstract
Scalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, Ti3 C2 nanoparticles, as a highly efficient co-catalyst. Ti3 C2 nanoparticles are rationally integrated with cadmium sulfide via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 μmol h-1 g-1 and an apparent quantum efficiency of 40.1% at 420 nm. This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of Ti3 C2 nanoparticles. Furthermore, Ti3 C2 nanoparticles also serve as an efficient co-catalyst on ZnS or Znx Cd1-x S. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer