It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Although outdoor cultivation systems have been widely used for mass production of microalgae at a relatively low cost, there are still limited efforts on outdoor cultivation of carbohydrate-rich microalgae that were further used as feedstock for fermentative bioethanol production. In particular, the effects of seasonal changes on cell growth, CO2 fixation, and carbohydrate production of the microalgae have not been well investigated.
Results
This work demonstrates the feasibility of using outdoor tubular photobioreactors (PBR) for whole-year-round cultivation of a carbohydrate-rich microalga Scenedesmus obliquus CNW-N in southern Taiwan. Time-course profile of the carbohydrate content under nitrogen-deficient conditions was monitored to assess the seasonal changes. The optimal CO2 fixation rate and carbohydrate productivity were 430.2 mg L-1 d-1and 111.8 mg L-1d-1, respectively, which were obtained during the summer time. Under nitrogen starvation, the microalgal biomass can accumulate nearly 45-50% of carbohydrates, mainly composed of glucose that accounted for 70-80% of the total carbohydrates in the microalgal cells. This glucose-rich microalgal biomass is apparently a very suitable carbon source for bioethanol fermentation.
Conclusion
This work shows the feasibility of combining CO2 fixation and bioethanol production using microalgae grown in outdoor photobioreactors as feedstock. The understanding of the seasonal changes in the carbohydrate productivity makes this approach more practically viable. The novel strategy proposed in this study could be a promising alternative to the existing technology dealing with CO2 mitigation and biofuels production.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer