It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Panic disorder (PD) is considered to be a multifactorial disorder emerging from interactions among multiple genetic and environmental factors. To date, although genetic studies reported several susceptibility genes with PD, few of them were replicated and the pathogenesis of PD remains to be clarified. Epigenetics is considered to play an important role in etiology of complex traits and diseases, and DNA methylation is one of the major forms of epigenetic modifications. In this study, we performed an epigenome-wide association study of PD using DNA methylation arrays so as to investigate the possibility that different levels of DNA methylation might be associated with PD.
Methods
The DNA methylation levels of CpG sites across the genome were examined with genomic DNA samples (PD, N = 48, control, N = 48) extracted from peripheral blood. Methylation arrays were used for the analysis. β values, which represent the levels of DNA methylation, were normalized via an appropriate pipeline. Then, β values were converted to M values via the logit transformation for epigenome-wide association study. The relationship between each DNA methylation site and PD was assessed by linear regression analysis with adjustments for the effects of leukocyte subsets.
Results
Forty CpG sites showed significant association with PD at 5% FDR correction, though the differences of the DNA methylation levels were relatively small. Most of the significant CpG sites (37/40 CpG sites) were located in or around CpG islands. Many of the significant CpG sites (27/40 CpG sites) were located upstream of genes, and all such CpG sites with the exception of two were hypomethylated in PD subjects. A pathway analysis on the genes annotated to the significant CpG sites identified several pathways, including "positive regulation of lymphocyte activation."
Conclusions
Although future studies with larger number of samples are necessary to confirm the small DNA methylation abnormalities associated with PD, there is a possibility that several CpG sites might be associated, together as a group, with PD.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer