Full Text

Turn on search term navigation

Copyright © 2017 Tongyu Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we proposed a beamforming antenna, which is realized using an omnidirectional antenna in the center surrounded by a cylindrical smart dome. The smart dome is made of 16 active frequency selective surface columns of which the amplitude and phase response can be continuously tuned by varying the bias voltages of the employed varactors. Thus, the performance of the proposed antenna could achieve higher gain, better nulling level, and more agility than many switch methods-based cylindrical reconfigurable antennas. Moreover, in order to overcome the unavailable analytical synthesis caused by complex mutual coupling between columns, we develop a genetic algorithm based optimization system and conducted a serial of experiments to evaluate the high-gain, nulling, continuously steering, and frequency-invariant ability. The results show that, during the frequency tunable range of the AFSS (2.0 GHz to 2.7 GHz), the antenna can offer an additional gain of up to 6.57 dB and nulling level of -56.41 dBi. For the high-gain modes, the -3 dB beam widths are 26°-34°, which offers enhanced angular resolution compared with other reported beam-sweeping work. Furthermore, the radiation pattern is continuously steerable.

Details

Title
Smart Cylindrical Dome Antenna Based on Active Frequency Selective Surface
Author
Ding, Tongyu; Zhang, Shaoqing; Zhang, Liang; Liu, Yanhui
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
16875869
e-ISSN
16875877
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1870254211
Copyright
Copyright © 2017 Tongyu Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.