Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Manufacturing and supply chain operations are on the cusp of an era with the emergence of groundbreaking technologies. Among these, the digital twin technology is characterized as a paradigm shift in managing production and supply networks since it facilitates a high degree of surveillance and a communication platform between humans, machines, and parts. Digital twins can play a critical role in facilitating faster decision making in product trade-ins by nearly eliminating the uncertainty in the conditions of returned end-of-life products. This paper demonstrates the potential effects of digital twins in trade-in policymaking through a simulated product-recovery system through blockchain technology. A discrete event simulation model is developed from the manufacturer’s viewpoint to obtain a data-driven trade-in pricing policy in a fully transparent platform. The model maps and mimics the behavior of the product-recovery activities based on predictive indicators. Following this, Taguchi’s Orthogonal Array design is implemented as a design-of-experiment study to test the system’s behavior under varying experimental conditions. A logistics regression model is applied to the simulated data to acquire optimal trade-in acquisition prices for returned end-of-life products based on the insights gained from the system.

Details

Title
Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain
Author
Özden Tozanlı  VIAFID ORCID Logo  ; Kongar, Elif  VIAFID ORCID Logo  ; Gupta, Surendra M  VIAFID ORCID Logo 
First page
5416
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2421305045
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.