It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A burning cigarette is a known cause of fire when mishandled. Studies into cigarette ignition propensity intensified after the US Cigarette Fire Safety Act of 1984. Extensive research has investigated the thermal properties of a smouldering cigarette, mostly away from any object of thermal contact or interference. To understand fire ignition, the thermophysics of cigarette's burning tip has also been examined with and without a contact substrate. In either free or contact smouldering cases, oxygen diffusion through the cigarette wrapping paper has been found to be an important parameter controlling the rate of burn and the energy released. Research by the US National Institute of Standards and Technology led to a standardized test method to determine cigarette ignition propensity, and eventually regulations enforcing Reduced Ignition Propensity (RIP) cigarettes have been passed in all US states and other countries. Among the physical parameters of a burning cigarette related to its thermal energy release, circumferential bands applied to the cigarette wrapping paper that reduce air permeability or diffusivity during smouldering have become the main approach to produce commercial RIP cigarettes. Studies have been performed to ensure that RIP cigarettes have equivalent or lower mainstream smoke yields and biological activities as compared with their conventional non-RIP equivalents. The effects of the paper band properties (width, gap between the bands, type as well as the amount of the material applied) have been studied systematically to establish a manufacturability window. Studies on human smoking behaviour confirmed that RIP cigarettes matched closely their predecessors. The bands, as intended, alter the combustion temperatures during cigarette smouldering within the band. Further research into the interaction of RIP cigarettes with different types of commercial upholstery fabrics and materials should help to understand its mechanism of action in support of emerging post-implementation fire statistics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer