It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Lung disease progression is variable among cystic fibrosis (CF) patients and depends on DNA mutations in the CFTR gene, polymorphic variations in disease modifier genes, and environmental exposure. The contribution of genetic factors has been extensively investigated, whereas the mechanism whereby environmental factors modulate the lung disease is unknown. In this project, we hypothesized that (i) reiterative stress alters the epigenome in CF-affected tissues and (ii) DNA methylation variations at disease modifier genes modulate the lung function in CF patients.
Results
We profiled DNA methylation at CFTR, the disease-causing gene, and at 13 lung modifier genes in nasal epithelial cells and whole blood samples from 48 CF patients and 24 healthy controls. CF patients homozygous for the p.Phe508del mutation and ≥18-year-old were stratified according to the lung disease severity. DNA methylation was measured by bisulfite and next-generation sequencing. The DNA methylation profile allowed us to correctly classify 75% of the subjects, thus providing a CF-specific molecular signature. Moreover, in CF patients, DNA methylation at specific genes was highly correlated in the same tissue sample. We suggest that gene methylation in CF cells may be co-regulated by disease-specific trans-factors. Three genes were differentially methylated in CF patients compared with controls and/or in groups of pulmonary severity: HMOX1 and GSTM3 in nasal epithelial samples; HMOX1 and EDNRA in blood samples. The association between pulmonary severity and DNA methylation at EDNRA was confirmed in blood samples from an independent set of CF patients. Also, lower DNA methylation levels at GSTM3 were associated with the GSTM3*B allele, a polymorphic 3-bp deletion that has a protective effect in cystic fibrosis.
Conclusions
DNA methylation levels are altered in nasal epithelial and blood cell samples from CF patients. Analysis of CFTR and 13 lung disease modifier genes shows DNA methylation changes of small magnitude: some of them are a consequence of the disease; other changes may result in small expression variations that collectively modulate the lung disease severity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer