Abstract
High-fluorescent p-X-ferrites (XFe2O4; XFO; X = Fe, Cr, Mn, Co, or Ni) embedded in n-hematite (Fe2O3) surfaces were successfully fabricated via a facile bio-approach using Shewanella oneidensis MR-1. The results revealed that the X ions with high/low work functions modify the unpaired spin Fe2+-O2- orbitals in the XFe2O4 lattices to become localized paired spin orbitals at the bottom of conduction band, separating the photovoltage response signals (73.36~455.16/-72.63~-32.43 meV). These (Fe2O3)-O-O-(XFe2O4) interfacial coupling behaviors at two fluorescence emission peaks (785/795 nm) are explained via calculating electron-hole effective masses (Fe2O3-FeFe2O4 17.23×10-31 kg; Fe2O3-CoFe2O4 3.93×10-31 kg; Fe2O3-NiFe2O4 11.59×10-31 kg; Fe2O3-CrFe2O4 -4.2×10-31 kg; Fe2O3-MnFe2O4 -11.73×10-31 kg). Such a system could open up a new idea in the design of photovoltage response biosensors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer