Full Text

Turn on search term navigation

Copyright Nature Publishing Group Mar 2017

Abstract

A quantum spin liquid is a state of matter characterized by quantum entanglement and the absence of any broken symmetry. In condensed matter, the frustrated rare-earth pyrochlore magnets Ho2 Ti2 O7 and Dy2 Ti2 O7 , so-called spin ices, exhibit a classical spin liquid state with fractionalized thermal excitations (magnetic monopoles). Evidence for a quantum spin ice, in which the magnetic monopoles become long range entangled and an emergent quantum electrodynamics arises, seems within reach. The magnetic properties of the quantum spin ice candidate Yb2 Ti2 O7 have eluded a global understanding and even the presence or absence of static magnetic order at low temperatures is controversial. Here we show that sensitivity to pressure is the missing key to the low temperature behaviour of Yb2 Ti2 O7 . By combining neutron diffraction and muon spin relaxation on a stoichiometric sample under pressure, we evidence a magnetic transition from a disordered, non-magnetic, ground state to a splayed ferromagnetic ground state.

Details

Title
Ground state selection under pressure in the quantum pyrochlore magnet Yb2Ti2O7
Author
Kermarrec, E; Gaudet, J; Fritsch, K; Khasanov, R; Guguchia, Z; Ritter, C; Ross, K A; Dabkowska, H A; Gaulin, B D
Pages
14810
Publication year
2017
Publication date
Mar 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1877387621
Copyright
Copyright Nature Publishing Group Mar 2017