Abstract

An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

Details

Title
Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback
Author
Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie
First page
321
Publication year
2017
Publication date
2017
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1878436626
Copyright
© 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.