Full Text

Turn on search term navigation

© 2017 Nagarajan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ubiquitin is a crucial post-translational modification regulating numerous cellular processes, but its role in metabolic disease is not well characterized. In this study, we identified the in vivo ubiquitin-modified proteome in rat liver and determined changes in this ubiquitome under acute insulin stimulation and high-fat and sucrose diet-induced insulin resistance. We identified 1267 ubiquitinated proteins in rat liver across diet and insulin-stimulated conditions, with 882 proteins common to all conditions. KEGG pathway analysis of these proteins identified enrichment of metabolic pathways, TCA cycle, glycolysis/gluconeogenesis, fatty acid metabolism, and carbon metabolism, with similar pathways altered by diet and insulin resistance. Thus, the rat liver ubiquitome is sensitive to diet and insulin stimulation and this is perturbed in insulin resistance.

Details

Title
Insulin and diet-induced changes in the ubiquitin-modified proteome of rat liver
Author
Nagarajan, Shilpa R; Brandon, Amanda E; McKenna, Jessie A; Shtein, Harrison C; Nguyen, Thinh Q; Eurwin Suryana; Poronnik, Philip; Cooney, Gregory J; Saunders, Darren N; Hoy, Andrew J
First page
e0174431
Section
Research Article
Publication year
2017
Publication date
Mar 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1879964538
Copyright
© 2017 Nagarajan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.