Ying Zhang 1 and Pan Ren 2 and Qunfu Kang 2; 3 and Weihong Liu 2 and Sinai Li 2 and Ping Li 2 and Hongxu Liu 4 and Juju Shang 4 and Lei Zhang 2 and Yanbing Gong 5 and Mingxue Zhou 2
Academic Editor:Ki-Wan Oh
1, Department of TCM, Beijing Luhe Hospital, Capital Medical University, Beijing 100149, China
2, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
3, Beijing Hospital of Traditional Chinese Medicine Shunyi Branch, Beijing 101300, China
4, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
5, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
Received 21 November 2016; Revised 27 February 2017; Accepted 27 February 2017; 12 April 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Atherosclerosis (As) is the leading cause of death worldwide in cardiovascular diseases, and it is also a primary contributor to the pathogenesis of acute cardiovascular diseases including myocardial infarctions [1, 2]. Although important advances in the understanding of the molecular mechanisms of As have been made in the last few decades [3], many questions remain. Therefore, it is crucial to investigate the mechanism of As formation for the treatment of As-related arterial diseases. Dysregulation of lipid homeostasis is closely related to the pathogenesis of As and has become a major underlying reason for its development [4]. Recent studies reported that SCAP/sterol regulatory element-binding proteins (SREBP) complex is crucial to control lipid homeostasis [5], and SREBPs, as key transcriptional factors, can regulate the biosynthesis of cholesterol [6]. Insig, as an accepted anchor protein of SCAP/SREBP complex, is capable of retaining SCAP/SREBP in the endoplasmic reticulum (ER). In addition, recent study reported that progestin and adipoQ receptors 3 (PAQR3), as a novel anchoring protein of SCAP/SREBP complex, also can regulate cholesterol biosynthesis and SREBP activation [7].
Insulin resistance plays a crucial role in the As process. Insulin induces forceful effects on lipid accumulation and regulates the expressions of genes involved in lipogenesis [8]. The stimulatory effect induced by insulin on lipogenesis was significantly inhibited after treatment with PI3K/Akt/mTORC1 inhibitors [8]. Moreover, PI3K/Akt/mTORC1 signaling conversely exerts crucial effects on the maintaining integrity of lipid rafts by modulating SREBP activation and subsequent cholesterogenesis [6].
Tetramethylpyrazine (TMP), as an active ingredient from Traditional Chinese Medicine (TCM), has been used for the treatment of As for a long time. TMP has been reported to be effective for the treatment of ischemia-reperfusion injury and ischemic brain injury [9, 10]. TMP contributes to expanding blood vessels, increasing coronary and cerebral blood flow, preventing platelet aggregation, and improving microcirculation [11]. In addition, TMP exerts a tangible protective effect in vascular endothelial cells and might be a potential protective agent for As [3]. However, the mechanism of TMP in As and lipid metabolism remains unknown. Based on the important role of PAQR3 and SCAP/SREBP signaling pathway in lipid metabolism, we investigated the effect of TMP on PAQR3 and SCAP/SREBP signaling pathway in order to explore its antiatherosclerotic mechanisms.
2. Materials and Methods
2.1. Animals
The ApoE-/- mice (n=30, 8 weeks of age, male, weighing 18-20 g) with C57BL/6J background were introduced and bred by the Department of Laboratory Animal Science of Peking University Health Science Center. All animal research conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication number 85-23) and was approved by the Ethics Review Board for Animal Studies of Peking University Health Science Center (Permit number IMM-GuYC-1).
2.2. Reagents
The blood lipid kits were purchased from Zhongsheng Beikong Biotechnology Co., Ltd. (Beijing, China), to measure total cholesterol (TC), triglycerides (TG), LDL, and high-density lipoprotein (HDL-C). A TRIzol kit was purchased from Invitrogen (California), polymerase chain reaction (PCR) primers were obtained from Sangon Biotech Co., Ltd. (Shanghai, China), and an M-MLV RT kit and a real-time- (RT-) PCR kit was purchased from Takara Company (Otsu, Shiga, Japan).
2.3. Establishment of the As Model
Thirty ApoE-/- mice were fed with a high-fat diet containing 21% (wt/wt) fat from lard supplemented with 0.15% (wt/wt) cholesterol obtained from Beijing Ke'aoXieli Feed Co. Ltd. (Beijing, China) for 12 weeks [12].
2.4. Drug Treatment
After six weeks on a high-fat diet, the ApoE-/- mice were randomized (10 per group) and treated with Lipitor (positive control drug, 3 mg/kg), TMP (45.05 mg/kg), or distilled water (control group) by intragastric administration, for an additional six weeks accompanied by a high-fat diet. The choice of drug doses was based on the clinically relevant doses in humans (the conversion coefficient between humans and mice is 9.01; the doses in mice are 9.01 times the clinical doses in humans) [13]. Distilled water was used to dilute the drugs.
2.5. Histology
After six weeks of drug therapy, all mice were euthanized by intraperitoneal injection with 0.1% pentobarbital sodium. The hearts were extracted, and one-third of the heart was fixed in 10% formaldehyde to determine the morphology of any atherosclerotic plaque by hematoxylin and eosin (HE) staining. The aorta, liver, and abdominal adipose tissues of the mice were removed and stored at -80°C [14, 15].
2.6. Determination of Lipid Concentration
After six weeks of drug therapy, all mice were euthanized by intraperitoneal injection with 0.1% pentobarbital sodium. Blood samples were drawn from the left ventricle of all ApoE-/- mice that had received a high-fat diet for 12 weeks. The serum TC and TG levels were determined. The LDL and HDL were determined by immunoturbidimetry. Finally, all indices were determined using the RX-2000 radiometer (Technicon Instruments Company, Tarrytown, New York) [14, 15].
2.7. Real-Time PCR
After six weeks of drug therapy, all mice were euthanized by intraperitoneal injection with 0.1% pentobarbital sodium. The total RNA from the aorta, liver, and adipose tissue was extracted using a TRIzol kit according to the manufacturer's instructions. The primers for PAQR3, Insig-1, SCAP, SREBP1, and GAPDH are shown in Table 1. The protocol for RT-PCR was previously described by us [16].
Table 1: The primers in this study.
Gene | Forward | Reverse |
Insig | 5[variant prime]-GGAGAGGACTCTTCCACAGC-3[variant prime] | 5[variant prime]-GTCCAACGCACATAGGACAC-3[variant prime] |
Paqr3 | 5[variant prime]-GATGGCATTGGATTATGCAG-3[variant prime] | 5[variant prime]-AAGCACGGTGATCAGGTACA-3[variant prime] |
Scap | 5[variant prime]-GAAGTCATCGGTGTCTCCCT-3[variant prime] | 5[variant prime]-GCTGTCTCTCAGCACATGGT-3[variant prime] |
Srebp | 5[variant prime]-TTGTGGAGCTCAAAGACCTG-3[variant prime] | 5[variant prime]-TGCAAGAAGCGGATGTAGTC-3[variant prime] |
2.8. Western Blotting
After six weeks of drug therapy, all mice were euthanized by intraperitoneal injection with 0.1% pentobarbital sodium. The adipose tissue from the other three groups of mice were removed and stored at -80°C to examine the protein expressions of Insig-1, SCAP, and SREBP-1c. The protocol for western blotting was previously described by us [17]. Primary antibodies including Insig-1 (Abcam, ab70784, 1 : 200), SREBP-1c (Abcam, ab28481, 1 : 1000), SCAP (Abcam, ab19013, 1 : 1000), IRS-1 (Abcam, ab52167, 1 : 1000), PI3K (Abcam, ab151549, 1 : 1000), Akt (Abcam, ab8805, 1 : 500), mTORC1(Abcam, ab2732, 1 : 200), PAQR3 (Abcam, ab174327, 1 : 250), and β -actin (Beijing Zhongshan Golden Bridge Biotechnology Co., TA-09, 1 : 1000) were used in this study. Protein expression was detected with an enhanced chemiluminescence detection system (Vigorous, Beijing, China).
2.9. Statistical Analysis
Mean values and standard deviations were calculated for each tested variable. All statistical analyses were performed using SPSS 11.5. Normally distributed data were analyzed using one-way analysis of variance with a Bonferroni post hoc test to evaluate the statistical significance of intergroup differences in all tested variables. In all cases, statistical significance was set at P<0.05 [14, 15].
3. Results
3.1. Feeding Fat Provokes the Formation of Atherosclerotic Plaques
After the ApoE-/- mice were fed with a high-fat diet for 12 weeks, atherosclerotic plaques in the aortic valves attachment sites, including cholesterol crystals and foam cells, were observed in the aortic roots, whereas no plaques were observed in the aortic roots of the C57 mice (Figure 1).
Figure 1: Comparison of pathological morphology of the aorta of C57BL/6J mice and ApoE-/- mice 13 weeks after being fed with different diets. (a) Hematoxylin and eosin (HE) showing the pathological morphology of the aorta of C57BL/6J mice fed with a regular diet. (b) The pathological morphology of the aorta of ApoE-/- mice fed with a high-fat diet. The black arrow indicates the aorta of the mice. Scale bar = 200 μ m.
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
3.2. TMP Ameliorates Blood Lipids and Atherosclerotic Plaques
As shown in Figure 2(a), the serum levels of TG, TC, and LDL-C in the TMP and Lipitor groups were significantly decreased (P<0.05), and the serum levels of HDL-C in the TMP and Lipitor groups were significantly increased as compared to the control group. There was no significant difference between the two drug-treatment groups (P>0.05). HE staining showed that the corrected areas of atherosclerotic plaques in the TMP and Lipitor groups were significantly decreased as compared to the control group (P<0.01), with no significant difference between the two drug-treatment groups (P>0.05) (Figures 2(b) and 2(c)).
Figure 2: Tetramethylpyrazine (TMP) ameliorates blood lipids and atherosclerotic plaques. (a) TMP ameliorates the serum lipids disturbance in ApoE-/- mice fed with a high-fat diet. TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. P[low *]<0.05 versus the control group, n=10. (b) Hematoxylin and eosin (HE) staining showing the pathological changes in the atherosclerotic plaque in the aorta of ApoE-/- mice after treatment with TMP. (1) ApoE-/- group; (2) ApoE-/- + Lipitor group; (3) ApoE-/- + TMP group. Scale bars = 200 μ m; the black arrow indicates the atherosclerotic plaque in aorta. (c) Statistical analysis of the corrected area of atherosclerotic plaque of ApoE-/- mice after the TMP treatment. P[low *]<0.01 versus the control group; n=10.
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
(c) [figure omitted; refer to PDF]
3.3. TMP Reduces Weight and Insulin Level
The weight and serum insulin levels of the TMP and Lipitor group mice were significantly decreased as compared to the control group (P<0.05), with no significant difference between the two drug-treatment groups (P>0.05) (Figure 3).
Figure 3: TMP reduces weight and insulin level. (a) Statistical analysis of weight of ApoE-/- mice after TMP treatment. (b) Statistical analysis of insulin levels of ApoE-/- mice after TMP treatment. P[low *]<0.05 versus the control group; n=10.
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
3.4. TMP Downregulates mRNA Expressions of Insig, PAQR3, SCAP, and SREBP1 in the Aorta, Liver, and Adipose Tissues
Six weeks after the drug treatment of the ApoE-/- mice fed with a high-fat diet, the mRNA expressions of Insig, PAQR3, SCAP, and SREBP in the aorta, liver, and adipose tissue of the TMP group mice were significantly decreased as compared to the control group (P<0.01), with no significant difference between the two drug-treatment groups (P>0.05) (Figure 4).
Figure 4: TMP downregulates the mRNA expressions of Insig-1, PAQR3, SCAP, and SREBP-1 in the aorta, liver, and adipose tissues. P[low *]<0.01 versus the control group; n=4.
[figure omitted; refer to PDF]
3.5. TMP Downregulates the Protein Expressions of Insig-1, PAQR3, SREBP-1c, and SCAP
Six weeks after the drug treatment of the ApoE-/- mice fed with a high-fat diet, the protein expressions of SREBP1-c and SCAP in the adipose tissue of the TMP group mice were significantly decreased (P<0.05). The protein expressions of Insig-1 and PAQR3 in the adipose tissue of the TMP group mice were slightly reduced (P>0.05). There was no significant difference between the two drug-treatment groups (P>0.05) (Figure 5).
Figure 5: TMP downregulates the protein expressions of Insig-1, PAQR3, SREBP-1c, and SCAP in adipose tissues. (a) Western blotting shows the protein expressions of Insig-1, PAQR3, SREBP1-c, and SCAP in adipose tissues of ApoE-/- mice fed with a high-fat diet. (b) Statistical analysis graph showing the protein expressions of Insig-1, PAQR3, SREBP-1c, and SCAP in the adipose tissues. P[low *]<0.05 versus the control group; n=3.
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
3.6. TMP Downregulates the Protein Expressions of IRS-1, PI3K, p-Akt, and mTORC1 in Adipose Tissues
Six weeks after TMP treatment of the ApoE-/- mice fed with a high-fat diet, the protein expressions of IRS-1, PI3K, p-Akt, and mTORC1 in the adipose tissues of TMP group mice were significantly decreased as compared to the control group (P<0.05) (Figure 6).
Figure 6: TMP downregulates the protein expressions of IRS-1, PI3K, p-Akt, and mTORC1 in the adipose tissues. (a) Western blotting shows the protein expressions of IRS-1, PI3K, p-Akt, and mTORC1 in adipose tissues of ApoE-/- mice fed with a high-fat diet. (b) Statistical analysis graph showing the protein expressions of IRS-1, PI3K, p-Akt, and mTORC1 in adipose tissues. P[low *]<0.05 versus the control group; n=3.
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
4. Discussion
This study demonstrated that TMP can dramatically ameliorate As in ApoE-/- mice fed with a high-fat diet by attenuating the blood lipid levels and reducing the plaque areas. In addition, TMP can inhibit the progress of As and ameliorate lipid metabolism disorder by downregulating PAQR3 and inhibiting SCAP/SREBP-1c signaling pathway in these mice. Moreover, PI3K/Akt/mTORC1 signaling pathway may be involved in this process.
In TCM, Chuan Xiong (Ligusticum wallichii Franchat) is applied for the treatment of cardiovascular diseases. TMP, a purified and chemically identified component of Chuan Xiong, has been reported to be effective for the treatment of kidney and brain damage induced by ischemia-reperfusion injury (I/R) [9, 10, 18]. This study showed that TMP can reduce the atherosclerotic plaques and attenuate abnormal levels of blood lipids in ApoE-/- mice fed with a high-fat diet, which is consistent with a previous report [11].
Among the mechanisms associated with As formation, the disturbance of lipid metabolism is widely accepted. Liver and adipose tissue are mainly involved in the process of lipid metabolism. Cholesterol biosynthesis can be regulated by SREBP and its escort protein SCAP [7]. SREBPs are pivotal activators of key enzymes responsible for the biosynthesis of fatty acids and cholesterol and play a crucial role in the progress of As [19, 20]. Under optimal cholesterol conditions, Insigs act as anchor proteins to retain SCAP/SREBP in the ER [7]. This study showed that TMP can downregulate the mRNA and protein expressions of SCAP and SREBP in the aorta, liver, and adipose tissue of ApoE-/- mice fed with a high-fat diet. This suggests that TMP may exert its antiatherosclerotic effect and ameliorate the disturbance of lipid metabolism by inhibiting SCAP/SREBP signaling pathway. In addition, TMP also inhibits the expression of Insig-1 in the adipose tissue of ApoE-/- mice fed with a high-fat diet. PAQR3 is a member of the progestin and adipoQ receptors (PAQR) superfamily [21]. A recent study showed that PAQR3 can interact with SCAP and SREBP and promote SCAP/SREBP complex formation, potentiate SREBP processing, and further enhance lipid synthesis [7]. Another study also showed that after feeding with a high-fat diet, the levels of blood cholesterol and LDL-C in PAQR3-deleted mice were significantly reduced as compared to the wild-type mice [22]. Thus, PAQR3, as an anchor protein for SCAP/SREBP complex, plays a vital role in the regulation of cholesterol homeostasis and SREBP pathway. This study showed that TMP can downregulate the mRNA expression of PAQR3 and partially reduce its protein expression in the adipose tissue of ApoE-/- mice fed with a high-fat diet. This indicates that PAQR3, and not Insig-1, may be a crucial target of TMP for ameliorating the disturbance of lipid metabolism. In addition, TMP may exert its antiatherosclerotic effect by downregulating PAQR3 and further inhibiting SCAP/SREBP-1c signaling pathway.
Insulin resistance plays a crucial role in the process of As. It has been confirmed that high-fat diet can induce insulin resistance in various mouse strains [23-26]. Insulin has been confirmed to induce forceful effects on lipid accumulation and the expression of genes involved in lipogenesis [7]. In this study, the weight and serum levels of insulin in the TMP and Lipitor groups were significantly decreased as compared to the control group. This suggests that TMP may ameliorate insulin resistance in ApoE-/- mice fed with a high-fat diet.
PI3K/Akt/mTOR signaling pathway is the pivotal pathway for regulating insulin resistance. The stimulatory effect of insulin on lipogenesis has been significantly inhibited after treating with PI3K/Akt/mTOR inhibitors [7]. PI3K/Akt/mTORC1 signaling pathway can maintain the integrity of lipid rafts by regulating SREBP activation [5]. In addition, PAQR3 can also modulate insulin sensitivity in mice partly via negative regulation of PI3K [22, 27]. This study showed that TMP can downregulate the protein expressions of IRS-1, PI3K, p-Akt, and mTORC1 in adipose tissues. This suggests that induction of PI3K/Akt/mTORC1 signaling pathway may be involved in the TMP-mediated amelioration of the lipid metabolism disturbance by inhibiting SCAP/SREBP signaling pathway.
In conclusion, we showed that TMP could inhibit the progress of As and ameliorate lipid metabolism disorder by downregulating PAQR3 and inhibiting SCAP/SREBP-1c signaling pathway in ApoE-/- mice fed with a high-fat diet. In addition, PI3K/Akt/mTORC1 signaling pathway may be involved in this process.
Acknowledgments
This work was supported by grants from National Natural Science Foundation of China (Grant nos. 81303086 and 81673744), Beijing Natural Science Foundation (7162043), and Beijing Health System-High Level Health Technology Talent Cultivation Plan (2014-3-100).
[1] R. Fu, Y. Zhang, Y. Guo, Y. Zhang, Y. Xu, F. Chen, "Digital gene expression analysis of the pathogenesis and therapeutic mechanisms of ligustrazine and puerarin in rat atherosclerosis,", Gene , vol. 552, no. 1, pp. 75-80, 2014.
[2] Y. Wu, J. Li, J. Wang, Q. Si, J. Zhang, Y. Jiang, L. Chu, "Anti-atherogenic effects of centipede acidic protein in rats fed an atherogenic diet,", Journal of Ethnopharmacology , vol. 122, no. 3, pp. 509-516, 2009.
[3] G.-F. Wang, C.-G. Shi, M.-Z. Sun, L. Wang, S.-X. Wu, H.-F. Wang, Z.-Q. Xu, D.-M. Chen, "Tetramethylpyrazine attenuates atherosclerosis development and protects endothelial cells from ox-LDL,", Cardiovascular Drugs and Therapy , vol. 27, no. 3, pp. 199-210, 2013.
[4] A. Sheril, S. M. Jeyakumar, T. Jayashree, N. V. Giridharan, A. Vajreswari, "Impact of feeding polyunsaturated fatty acids on cholesterol metabolism of dyslipidemic obese rats of WNIN/GR-Ob strain,", Atherosclerosis , vol. 204, no. 1, pp. 136-140, 2009.
[5] W. Shao, P. J. Espenshade, "Sterol regulatory element-binding protein (SREBP) cleavage regulates golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP),", The Journal of Biological Chemistry , vol. 289, no. 11, pp. 7547-7557, 2014.
[6] Y. Yamauchi, K. Furukawa, K. Hamamura, K. Furukawa, "Positive feedback loop between PI3K-Akt-mTORC1 signaling and the lipogenic pathway boosts Akt signaling: induction of the lipogenic pathway by a melanoma antigen,", Cancer Research , vol. 71, no. 14, pp. 4989-4997, 2011.
[7] D. Xu, Z. Wang, Y. Zhang, W. Jiang, Y. Pan, B.-L. Song, Y. Chen, "PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus,", Nature Communications , vol. 6, article 8100, 2015.
[8] C. Han, S. Wei, F. He, D. Liu, H. Wan, H. Liu, L. Li, H. Xu, X. Du, F. Xu, "The regulation of lipid deposition by insulin in goose liver cells is mediated by the PI3K-AKT-mTOR signaling pathway,", PLoS ONE , vol. 10, no. 5, 2015.
[9] L. Feng, Y. Xiong, F. Cheng, L. Zhang, S. Li, Y. Li, "Effect of ligustrazine on ischemia-reperfusion injury in murine kidney,", Transplantation Proceedings , vol. 36, no. 7, pp. 1949-1951, 2004.
[10] S.-L. Liao, T.-K. Kao, W.-Y. Chen, Y.-S. Lin, S.-Y. Chen, S.-L. Raung, C.-W. Wu, H.-C. Lu, C.-J. Chen, "Tetramethylpyrazine reduces ischemic brain injury in rats,", Neuroscience Letters , vol. 372, no. 1-2, pp. 40-45, 2004.
[11] X. Liu, H. Liu, Z. Zeng, W. Zhou, J. Liu, Z. He, "Pharmacokinetics of ligustrazine ethosome patch in rats and anti-myocardial ischemia and anti-ischemic reperfusion injury effect,", International Journal of Nanomedicine , vol. 6, pp. 1391-1398, 2011.
[12] X. R. Yang, E. Wat, Y. P. Wang, C. H. Ko, C. M. Koon, W. S. Siu, S. Gao, D. W. S. Cheung, C. B. S. Lau, C. X. Ye, P. C. Leung, "Effect of dietary cocoa tea (Camellia ptilophylla) supplementation on high-fat diet-induced obesity, hepatic steatosis, and hyperlipidemia in mice,", Evidence-based Complementary and Alternative Medicine , vol. 2013, 2013.
[13] M. Zhou, H. Xu, L. Pan, J. Wen, W. Liao, K. Chen, "Rosiglitazone promotes atherosclerotic plaque stability in fat-fed ApoE-knockout mice,", European Journal of Pharmacology , vol. 590, no. 1-3, pp. 297-302, 2008.
[14] M. Zhou, C. Ma, W. Liu, H. Liu, N. Wang, Q. Kang, P. Li, "Valsartan promoting atherosclerotic plaque stabilization by upregulating renalase,", Journal of Cardiovascular Pharmacology and Therapeutics , vol. 20, no. 5, pp. 509-519, 2015.
[15] Q. Kang, W. Liu, H. Liu, M. Zhou, "Effect of compound chuanxiong capsule on inflammatory reaction and PI3K/Akt/NF-κ B signaling pathway in atherosclerosis,", Evidence-based Complementary and Alternative Medicine , vol. 2015, 2015.
[16] S. Qi, Y. Wang, M. Zhou, Y. Ge, Y. Yan, J. Wang, S. S.-M. Zhang, S. Zhang, "A mitochondria-localized glutamic acid-rich protein (MGARP/OSAP) is highly expressed in retina that exhibits a large area of intrinsic disorder,", Molecular Biology Reports , vol. 38, no. 5, pp. 2869-2877, 2011.
[17] M. Zhou, Y. Wang, S. Qi, J. Wang, S. Zhang, "The expression of a mitochondria-localized glutamic acid-rich protein (MGARP/OSAP) is under the regulation of the HPG axis,", Endocrinology , vol. 152, no. 6, pp. 2311-2320, 2011.
[18] Z.-H. Zhang, S.-Z. Yu, Z.-T. Wang, B.-L. Zhao, J.-W. Hou, F.-J. Yang, W.-J. Xin, "Scavenging effects of tetramethylpyrazine on active oxygen free radicals,", Acta Pharmacologica Sinica , vol. 15, no. 3, pp. 229-231, 1994.
[19] P. Ferré, F. Foufelle, "SREBP-1c transcription factor and lipid homeostasis: clinical perspective,", Hormone Research , vol. 68, no. 2, pp. 72-82, 2007.
[20] T.-I. Jeon, T. F. Osborne, "SREBPs: metabolic integrators in physiology and metabolism,", Trends in Endocrinology and Metabolism , vol. 23, no. 2, pp. 65-72, 2012.
[21] T. Yamauchi, J. Kamon, Y. Ito, "Cloning of adiponectin receptors that mediate antidiabetic metabolic effects,", Nature , vol. 423, pp. 762-769, 2003.
[22] L. Wang, X. Wang, Z. Li, T. Xia, L. Zhu, B. Liu, Y. Zhang, F. Xiao, Y. Pan, Y. Liu, F. Guo, Y. Chen, "PAQR3 has modulatory roles in obesity, energy metabolism, and leptin signaling,", Endocrinology , vol. 154, no. 12, pp. 4525-4535, 2013.
[23] R. S. Surwit, M. N. Feinglos, J. Rodin, A. Sutherland, A. E. Petro, E. C. Opara, C. M. Kuhn, M. Rebuffe-Scrive, "Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice,", Metabolism: Clinical and Experimental , vol. 44, no. 5, pp. 645-651, 1995.
[24] R. S. Surwit, C. M. Kuhn, C. Cochrane, J. A. McCubbin, M. N. Feinglos, "Diet-induced type II diabetes in C57BL/6J mice,", Diabetes , vol. 37, no. 9, pp. 1163-1167, 1988.
[25] D. B. West, C. N. Boozer, D. L. Moody, R. L. Atkinson, "Dietary obesity in nine inbred mouse strains,", American Journal of Physiology - Regulatory Integrative and Comparative Physiology , vol. 262, no. 6, pp. R1025-R1032, 1992.
[26] M. S. Winzell, B. Ahrén, "The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes,", Diabetes , vol. 53, supplement 3, pp. S215-S219, 2004.
[27] X. Wang, L. Wang, L. Zhu, Y. Pan, F. Xiao, W. Liu, Z. Wang, F. Guo, Y. Liu, W. G. Thomas, Y. Chen, "PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus,", Diabetes , vol. 62, no. 2, pp. 444-456, 2013.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2017 Ying Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Lipid metabolism dysregulation plays a crucial role in the occurrence of atherosclerosis (As). SCAP/SREBP signaling is the main pathway for regulating lipid metabolism. Tetramethylpyrazine (TMP), a Traditional Chinese Medicine (TCM) for treating angina pectoris, has antiatherosclerotic effects and ameliorates blood lipids disturbance. However, its precise mechanism remains unclear. This study investigated the mechanism of TMP in ameliorating As in mice model. After six weeks of high-fat diet, 30 ApoE-/- mice were randomized (n=10) and treated with Lipitor, TMP, or distilled water for six weeks. The serum blood lipids and insulin levels were measured. The expressions of PAQR3, Insig-1, SCAP, SREBP-1c, IRS-1, PI3K, Akt, and mTORC-1 in the adipose tissues were determined. The results showed that TMP could significantly decrease blood lipids levels, insulin, and corrected plaque area of the ApoE-/- mice as compared to the untreated mice (P<0.05, P<0.01). Moreover, TMP could significantly downregulate the expressions of SCAP, SREBP-1c, PAQR3, IRS-1, PI3K, Akt, and mTORC1 (P<0.01). Thus, TMP may ameliorate lipid metabolism disorder and As by downregulating PAQR3 and inhibiting SCAP/SREBP-1c signaling pathway. In addition, PI3K/Akt/mTORC1 signaling pathway may be involved in this process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer