It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We have studied the complete set of dimension 5 and dimension 6 effective operators involving the interaction of scalar, fermion and vector Dark Matter (DM) with SM quarks and gluons, to explore the possibility to distinguish these operators and characterise the spin of DM at the LHC. We have found that three factors — the effective dimension of the operator, the structure of the SM part of the operator and the parton densities of the SM particles connected to the operator — uniquely define the shape of the (unobservable) invariant mass distribution of the DM pair and, consequently, the shape of the (observable) ETmiss distribution related to it. Using χ2 analysis, we found that at the LHC, with a luminosity of 300 fb−1, certain classes of EFT operators can be distinguished from each other. Hence, since DM spin is partly correlated with the factors defining the shape of ETmiss, the LHC can potentially shed a light also on DM spin. We have also observed a drastic difference in the efficiencies (up to two orders of magnitude) for large ETmiss cuts scenarios with different DM spin, thus indicating that the DM discovery potential strongly depends on it. The study we perform here can be applied more generally than within the EFT paradigm, where the DM mediator is not produced on-the-mass-shell, such as the case of t-channel mediator or mediator with mass below 2MDM, where the invariant mass of the DM pair is not fixed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Southampton, School of Physics and Astronomy, Southampton, U.K. (GRID:grid.5491.9) (ISNI:0000 0004 1936 9297); Rutherford Appleton Laboratory, Particle Physics Department, Didcot, U.K. (GRID:grid.76978.37) (ISNI:0000 0001 2296 6998)
2 Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia (GRID:grid.14476.30) (ISNI:0000 0001 2342 9668)