Abstract

Ca2+ release-activated Ca2+ (CRAC) channels elevate cytoplasmic Ca2+ concentration, which is essential for T cell activation, differentiation and effector functions. T cell receptor stimulation induces depletion of the endoplasmic reticulum (ER) Ca2+ stores, which is sensed by stromal interaction molecule 1 (STIM1). STIM1 translocates to the ER-plasma membrane (PM) junctions to interact with ORAI1, the pore subunit of the CRAC channels. Here, we show that two members of the extended synaptotagmin (E-Syt) family, E-Syt1, and the short isoform of E-Syt2 (E-Syt2S), contribute to activation of CRAC channels in T cells. Knockdown or deletion of both ESYT1 and ESYT2 reduced store-operated Ca2+ entry (SOCE) and ORAI1-STIM1 clustering in Jurkat T cells. Further, depletion of E-Syts in primary T cells decreased Ca2+ entry and cytokine production. While the ER-PM junctions were reduced in both HeLa and Jurkat T cells deleted for ESYT1 and ESYT2, SOCE was impaired only in Jurkat T cells, suggesting that the membrane-tethering function of E-Syts is distinct from their role in SOCE. Mechanistically, E-Syt2S, the predominant isoform of E-Syt2 in T cells, recruited STIM1 to the junctions via a direct interaction. This study demonstrates a membrane-tethering-independent role of E-Syts in activation of CRAC channels in T cells.

Details

Title
The short isoform of extended synaptotagmin-2 controls Ca2+ dynamics in T cells via interaction with STIM1
Author
Woo, Jin Seok 1 ; Sun Zuoming 2 ; Srikanth Sonal 1 ; Yousang, Gwack 1 

 David Geffen School of Medicine at UCLA, Department of Physiology, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 Beckman Research Institute of City of Hope, Department of Molecular Imaging & Therapy, Duarte, USA (GRID:grid.410425.6) (ISNI:0000 0004 0421 8357) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1893992225
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.