Full text

Turn on search term navigation

© 2017 Kanomata et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p < 0.001), histologic grade (p = 0.003), lymphatic infiltration (p < 0.001), venous infiltration (p < 0.001), and Ki-67 index (p < 0.001). However, cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 statuses. This antiserum will be applicable to clinicopathological examination of aromatase in addition to ER and PgR for an appropriate use of aromatase inhibitor on the treatment of breast cancer. Further studies on the relationship between Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p < 0.001), histologic grade (p = 0.003), lymphatic infiltration (p < 0.001), venous infiltration (p < 0.001), and Ki-67 index (p < 0.001). However, cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 statuses. This antiserum will be applicable to clinicopathological examination of aromatase in addition to ER and PgR for an appropriate use of aromatase inhibitor on the treatment of breast cancer. Further studies on the relationship between aromatase expression and aromatase inhibitors are warranted.

Details

Title
Preparation of a novel antiserum to aromatase with high affinity and specificity: Its clinicopathological significance on breast cancer tissue
Author
Kanomata, Naoki; Matsuura, Shiro; Nomura, Tsunehisa; Kurebayashi, Junichi; Mori, Taisuke; Kitawaki, Jo; Moriya, Takuya
First page
e0177439
Section
Research Article
Publication year
2017
Publication date
May 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1897668216
Copyright
© 2017 Kanomata et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.