It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Real-time rotor position and speed information is essential for effective power control of permanent magnet synchronous generator-based wind energy conversion systems. The presence of traditional encoders can increase the size, cost and complexity, but also reduce the overall system life-time and reliability. To provide a more reliable sensorless wind generation control scheme and eliminate the reliance on encoders, this paper presents a novel high order sliding mode observer for power control of permanent magnet synchronous generator-based wind energy conversion systems. Compared with the first order sliding mode observer, a high order sliding mode observer shows superior estimation accuracy with significantly reduced chattering effect. A three-level neutral-point-clamped space vector pulse width modulation (NPC-SVPWM) based power converter is used to reduce the voltage stress on power switching devices and produce less harmonics in the output waveforms compared with a traditional two-level inverter. Computer simulation results have shown the superior performance of the purposed high order sliding mode observer in wind turbine power control applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer