Full text

Turn on search term navigation

Copyright Nature Publishing Group May 2017

Abstract

Random distributed feedback fibre lasers belong to the class of random lasers, where the feedback is provided by amplified Rayleigh scattering on sub-micron refractive index inhomogenities randomly distributed over the fibre length. Despite the elastic nature of Rayleigh scattering, the feedback mechanism has been insofar deemed incoherent, which corresponds to the commonly observed smooth generation spectra. Here, using a real-time spectral measurement technique based on a scanning Fabry-Pérot interferometer, we observe long-living narrowband components in the random fibre laser's spectrum. Statistical analysis of the ∼104 single-scan spectra reveals a preferential interspacing for the components and their anticorrelation in intensities. Furthermore, using mutual information analysis, we confirm the existence of nonlinear correlations between different parts of the random fibre laser spectra. The existence of such narrowband spectral components, together with their observed correlations, establishes a long-missing parallel between the fields of random fibre lasers and conventional random lasers.

Details

Title
Spectral correlations in a random distributed feedback fibre laser
Author
Sugavanam, Srikanth; Sorokina, Mariia; Churkin, Dmitry V
Pages
15514
Publication year
2017
Publication date
May 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1899771914
Copyright
Copyright Nature Publishing Group May 2017