Full text

Turn on search term navigation

© 2017 Céspedes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Protein α-helical coiled coil structures are known to induce antibodies able to block critical functions in different pathogens. In a previous study, a total of 50 proteins of Plasmodium vivax erythrocytic asexual stages containing α-helical coiled coil structural motifs were identified in silico, and the corresponding peptides were chemically synthesized. A total of 43 peptides were recognized by naturally acquired antibodies in plasma samples from both Papua New Guinea (PNG) and Colombian adult donors. In this study, the association between IgG antibodies to these peptides and clinical immunity was further explored by measuring total IgG antibody levels to 24 peptides in baseline samples from a longitudinal study of children aged 1–3 years (n = 164) followed for 16 months. Samples were reactive to all peptides tested. Eight peptides were recognized by >50% of individuals, whereas only one peptide had < 20% reactivity. Children infected at baseline were seropositive to 23/24 peptides. No significant association was observed between antibody titers and age or molecular force of infection, suggesting that antibody levels had already reached an equilibrium. There was a strong association between antibody levels to all peptides and protection against P. vivax clinical episodes during the 16 months follow-up. These results suggest that the selected coiled coil antigens might be good markers of both exposure and acquired immunity to P. vivax malaria, and further preclinical investigation should be performed to determine their potential as P. vivax vaccine antigens.

Details

Title
Natural immune response to Plasmodium vivax alpha-helical coiled coil protein motifs and its association with the risk of P. vivax malaria
Author
Céspedes, Nora; Connie S N Li Wai Suen; Koepfli, Cristian; França, Camila T; Felger, Ingrid; Issa Nebie; Arévalo-Herrera, Myriam; Mueller, Ivo; Corradin, Giampietro; Herrera, Sócrates
First page
e0179863
Section
Research Article
Publication year
2017
Publication date
Jun 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1913783840
Copyright
© 2017 Céspedes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.