Full Text

Turn on search term navigation

© 2017 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

By using dehydroabietyltrimethyl ammonium bromine (DTAB), a novel rosin-derived quaternary ammonium salt, as template and peroxotitanium acid as precursor, ordered lamellar supermicroporous titania has been synthesized via a hydrothermal process. The template agent:titanium source molar ratio in the synthesis system and the hydrothermal temperature have great impact on the microstructure characteristics of the samples. The increase of DTAB:TiO2 molar ratio from 0.04:1 to 0.10:1 is favorable to the increase of regularity of pore structures, but has no significant effects on the crystalline structures. The increase of the hydrothermal temperature from 343 to 393 K can induce an increase in crystallinity of the samples. However, the exorbitant hydrothermal temperature will reduce the regularity of pore structures. When the mole ratio of DTAB:TiO2 is 0.10:1 and the hydrothermal temperature is 373 K, the as-synthesized sample possesses pore structure with the highest level of long-range order, as well as pore wall with semicrystallized anatase phase. The pore size and the pore wall thickness are about 2.0 nm and 1.0 nm, respectively.

Details

Title
Ordered lamellar supermicroporous titania templating by rosin-derived quaternary ammonium salt
Author
Song, Fei; Wang, Peng; Chen, Shangxing; Wang, Zongde; Fan, Guorong
First page
e0180178
Section
Research Article
Publication year
2017
Publication date
Jun 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1914988339
Copyright
© 2017 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.