Full text

Turn on search term navigation

© 2017 Fan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Differentially expressed microRNAs were detected to explore the molecular mechanisms of diapause termination. The total small RNA of diapause-destined silkworm eggs and HCl-treated eggs was extracted and then sequenced using HiSeq high-throughput method. 44 novel miRNAs were discovered. Compared to those in the diapause-destined eggs, 61 miRNAs showed significant changes in the acid-treated eggs, with 23 being up-regulated and 38 being down-regulated. The potential target genes of differentially expressed miRNAs were predicted by miRanda. Gene Ontology and KEGG pathway enrichment analysis of these potential target genes revealed that they were mainly located within cells and organelles, involved in cellular and metabolic processes, and participated in protein production, processing and transportation. Two differentially expressed genes, Bombyx mori SDH and Bmo-miR-2761-3p, were further analyzed with qRT-PCR. BmSDH was significantly up-regulated in the HCl-treated eggs, while Bmo-miR-2761-3p was down-regulated. These results suggested that these two genes were well coordinated in silkworm eggs. Dual luciferase reporter assay demonstrated that Bmo-miR-2761-3p inhibited the expression of BmSDH.

Details

Title
Differentially expressed microRNAs in diapausing versus HCl-treated Bombyx embryos
Author
Fan, Wentao; Zhong, Yangsheng; Qin, Mingyue; Lin, Bimin; Chen, Fangyan; Yan, Huichao; Li, Wenchu; Lin, Jianrong
First page
e0180085
Section
Research Article
Publication year
2017
Publication date
Jul 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1917954100
Copyright
© 2017 Fan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.