About the Authors:
Kudzai Shaun Mpakairi
Roles Conceptualization, Methodology, Validation, Visualization, Writing – original draft, Writing – review & editing
Affiliation: Department of Geography and Environmental Science, University of Zimbabwe, Harare, Zimbabwe
Henry Ndaimani
Roles Conceptualization, Data curation, Investigation, Methodology, Validation, Visualization, Writing – original draft, Writing – review & editing
Affiliation: Department of Geography and Environmental Science, University of Zimbabwe, Harare, Zimbabwe
Paradzayi Tagwireyi
Roles Conceptualization, Data curation, Formal analysis, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing
* E-mail: [email protected]
Affiliation: Department of Geography and Environmental Science, University of Zimbabwe, Harare, Zimbabwe
ORCID http://orcid.org/0000-0001-6065-918X
Tawanda Winmore Gara
Roles Writing – original draft
Affiliations Department of Geography and Environmental Science, University of Zimbabwe, Harare, Zimbabwe, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
Mark Zvidzai
Roles Validation, Writing – original draft
Affiliation: Department of Geography and Environmental Science, University of Zimbabwe, Harare, Zimbabwe
Daphine Madhlamoto
Roles Data curation, Investigation, Validation, Writing – original draft
Affiliation: Zimbabwe Parks and Wildlife Management Authority, Gonarezhou National Park, Chiredzi, Zimbabwe
Introduction
Ecologists appreciate the central role of competition among species in shaping community structure within ecosystems [1, 2]. Species compete for a suit of resources including food [3, 4]; water [5, 6] and space [7, 8]. Heightened competition among species may lead to community reorganization as the weaker competitor is often excluded, replaced and possibly suffers local extinction [9, 10]. However, some species adapt through niche differentiation [11] by avoiding patches where their access to resources is compromised with competition from individuals of the same species (intraspecific competition) or those from another species (interspecific competition) [12]. It is also noteworthy that for some species, the effect of competition on community structure remains largely negligible [13]. These mechanisms put together, help to explain why species select or avoid particular patches. It is for this reason that explaining the geographic distribution of species without using competition as a predictor may not be adequate. However the inclusion of species competition in SDMs remains a grey area [6].
The reasons for the exclusion of competition as a predictor variable in SDMs are many including challenges in rasterizing competition. SDMs require continuous surfaces (e.g., raster data) as predictor variables [14, 15] but currently, there lacks a formally documented method for rasterizing species competition despite the documented central role of competition in explaining species distribution. Some studies have estimated competition from point observations made in the field [16, 17]. However, to the best of our knowledge, past species distribution modelling attempts (using SDMs) did not use competition as a predictor variable.
In this study, we hypothesized that competition (estimated by distance from the nearest animal sighting) is a key predictor of the potential geographic distribution of selected grazers. We propose that physical separation of two species in a landscape is a strategy adopted to avoid direct competition for resources such as forage and water. Thus the further away the species are located in the landscape, the lesser the competition and the closer they are, the more the competition. To test this hypothesis we determined the relative contribution of competition to predicting the potential distribution of selected grazers as well as the response of selected individual grazers to competition. To achieve this, we used the Ensemble SDM [18] with distance from the nearest sighting together with five other key traditional predictor variables to predict the potential geographic distribution of: buffalo (Syncerus caffer); warthog (Phacochoerus africanus); waterbuck (Kobus ellipsiprymnus); wildebeest (Connochaetes taurinus), and, zebra (Equus quagga) in Gonarezhou National Park, Zimbabwe. We anticipate that the results of this research will find use in ecological applications that seek to predict the potential distribution of species by encouraging the incorporation of species competition, a key driver of species distribution that has been neglected in past SDMs.
Materials and methods
Study site
The study was conducted in the Gonarezhou National Park in south-eastern Zimbabwe (Fig 1). The park lies between longitudes 31.32°E– 32.41°E and between latitudes 21.11°S– 22.22°E. The park is the second largest in Zimbabwe with a considerable diversity of large mammalian species. The 2013 aerial survey estimated the population of our target grazer species as follows: buffalo (4425); warthog (484); waterbuck (578); wildebeest (1416); and, zebra (1685) [19]. Hunting and other forms of consumptive tourism are not permitted in the park and the main tourism activity is photographic safaris. Thus, the main sources of human interference with wildlife include tourist-carrying vehicles that drive along the main tourist routes as well as poaching for game meat from surrounding communities. Uncontrolled veld fires occur frequently in the park [20] and these are known to drive ungulate distribution in most ecosystems.
[Figure omitted. See PDF.]
Fig 1. Location of the Gonarezhou National Park (GNP) in south-eastern Zimbabwe showing presence-only location data for five grazer species.
https://doi.org/10.1371/journal.pone.0181088.g001
Grazer presence data
Presence data for buffalo (n = 93), warthog (n = 27), waterbuck (n = 21), wildebeest (n = 24) and zebra (n = 44) were collected via an aerial survey conducted in the study area in October 2013. The aerial survey was a sample with transects spaced at 1.5 km and 2.5 km depending on animal density within sampling strata. A Cessna 185 fixed wing plane was used and two observers sitting at the right and left sides of the plane observed animals within strips of width 150 m. The observers searched for animals between two streamers fitted to the wing struts of the plane during pre-calibration flights in such a way that the search strip on the ground was 150 m wide. Each time animals were sighted, the location of the sighting was marked using a handheld GPS device (GPSmap 296, Garmin international). A full description of the method is provided in Norton-Griffiths [21].
Environmental variables
Species distribution models were based on six predictor variables; Soil Adjusted Vegetation Index (SAVI), distance from roads, distance from settlements, distance from water, distance from the nearest animal sighting and fire frequency. Initially, we had seven environmental variables including short term fire scars but this was excluded in the final modelling since it exhibited evidence of multicollinearity. We tested for multicollinearity among the predictor variables using the Variance Inflation Factor (VIF) where the predictors with a VIF >10 were not included in the final modelling. The VIF was calculated using in Eq 1.
(1)
We also tested for correlation between pairs of predictor variables using Pearson’s correlation coefficient (Table 1), and observed no multicollinearity amongst the predictor variables used to build the candidate models (|r|<0.7 [22]).
[Figure omitted. See PDF.]
Table 1. Pearson correlation matrix for predictor variables.
https://doi.org/10.1371/journal.pone.0181088.t001
SAVI is a proxy for grazing forage quantity which adjusts for bare ground [23]. The computation of SAVI was based on MODIS (MOD02QKM) images freely available at www.ladsweb.nascom.nasa.gov (accessed on December 12 2016). The MODIS images were acquired for October 2013, the same time when grazer presence data were collected. Pre-processing of the data included projection of the data from the sinusoidal (SIN) to the WGS 84 UTM Zone 36 South Coordinate Reference System to ensure compatibility with animal presence data described earlier. SAVI is a standard vegetation index calculated using Eq 2.(2)where NIR represents reflectance in the Near Infrared and R represents the Red band of the electromagnetic spectrum.
Distance from roads and distance from settlements were both used as indicators of human interference on wildlife e.g., through tourists conducting photographic safaris and illegal hunting. The roads and settlements were digitised on very high resolution images freely available on the Google Earth platform (www.googleearth.com). Later, distance from the roads and settlements were calculated using the Euclidean distance algorithm implemented in ArcGIS 10.1 [24].
We included distance from water as a predictor because drinking water is known to drive the distribution of most ungulates [25]. The active water points during the time of sampling were extracted from MODIS NDVI (MOD13Q1) data freely available on www.glovis.usgs.gov. The NDVI of water bodies is generally negative and the <0.0 threshold was used to classify water points following Huang et al [26]. We later calculated the distance of individual pixels from the nearest water point using the Euclidean distance calculation algorithm as described earlier.
The distance of individual pixels from the nearest recorded location of animal sighting was used as a proxy for interference competition where the pixels closer to the sighting represented elevated competition while those further away represented reduced competition. First, animal sighting data from the aerial survey described earlier were extracted. Second, the distance of individual pixels from the nearest location of an animal sighting other than the one whose distribution was being predicted was calculated using the Euclidian distance algorithm as described earlier. In this study, we used distance from the nearest sighting as an indirect measure of interference competition assuming that herbivores occupying the same space in the landscape tend to compete more for forage and other resources than those further apart.
Fire scars were used as a proxy for grazing forage quality where pixels with high fire frequency represented superior quality forage whilst those with low values represented inferior quality. Frequent fires are known to clear moribund vegetation and to promote the growth of fresh grass rich in nitrogen [27]. Fire scar data at the 500 m spatial resolution were obtained from the MODIS fire data platform made available via www.reverb.echo.nasa.gov (accessed on 1 December 2016). These data were downloaded for a 15 year period (2000–2014). Overlay analysis was later used to calculate fire frequency for individual pixels. Therefore fire frequency ranged from zero to 15 where zero represented pixels that were never burnt during the 15 year period while 15 represented those that were burnt each fire season of the 15 year period.
Modelling approach
The Ensemble algorithm within the Biomode2 package in R [18] was used for modelling with the target species’ presence location data as the response variable and the six environmental variables described above as the predictors. Ensemble models were built, each for buffalo, warthog, waterbuck, wildebeest and zebra. For each SDM, 70% of the presence points were used to calibrate the model while the remaining 30% were used to validate the model. We used a threshold of ROC >0.6 for the Ensemble SDM following Thuiller et al [18].
The response of individual species to each of the six predictor variables was assessed using the response curves. For interpretation of the response curves, the logistic threshold of equal training sensitivity and specificity was used where the values above the threshold represented presence while those below represented absence. For overall model performance we used AUC following Panczykowski et al [28]. We also ran models without distance from the nearest animal sighting as a predictor to establish changes in model performance when the predictor was not used to build the model.
The contributions of individual predictors to the final model were tested using the variables importance calculation based on permutations implemented in the Biomod2 package in R. This statistic is based on calculation of the Pearson’s correlation between reference predictors and shuffled predictors. A predictor with a variable importance of zero has no influence on the final model.
Results
The predictor variables i.e., SAVI as well as distance from roads, settlements and water, distance from the nearest sighting and fire frequency adequately explained the potential distribution of buffalo, waterbuck, wildebeest and zebra in the study area (AUC>0.90). However, the AUC for the model explaining the distribution of warthog was found to be 0.79.
Modelling without distance from the nearest sighting as a predictor variable reduced the AUC for buffalo (from 0.98 to 0.93), wildebeest (0.99 to 0.94) and zebra (from 0.97 to 0.93). However the AUC became better for warthog (from 0.79 to 0.94) and waterbuck (from 0.95 to 0.97) when the distance from the nearest sighting was not included as a predictor variable.
The variable importance analysis (Table 2) showed that distance from other animal sightings (used as a proxy for competition) was the best predictor of the potential distribution of buffalo (0.70), wildebeest (0.79) and zebra (0.79). However, distance from the nearest sighting was the second from most important variable in predicting the potential distribution of warthog (0.34) and waterbuck (0.12). Distance from settlements was the most important variable explaining the potential distribution of warthog whilst distance from water was the most important in explaining the distribution of waterbuck.
[Figure omitted. See PDF.]
Table 2. Variable importance for each species distribution model.
https://doi.org/10.1371/journal.pone.0181088.t002
Buffalo selected patches of medium SAVI (0.17–0.23), medium distance to roads (236–4875 m), medium distance to settlements (11–16 km), close to water (2372–3263 m), far from other sightings (>58 m) and of high fire frequency (4–11 fires in 15 years) (Fig 2).
[Figure omitted. See PDF.]
Fig 2. The response of buffalo to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance from settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency.
Dotted lines represent the logistic threshold of equal training sensitivity and specificity.
https://doi.org/10.1371/journal.pone.0181088.g002
Response curves for warthog show that for all the six predictor variables, they selected patches with values above the logistic threshold of equal training sensitivity and specificity (Fig 3).
[Figure omitted. See PDF.]
Fig 3. The response of warthog to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance from settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency.
Dotted lines represent the logistic threshold of equal training sensitivity and specificity.
https://doi.org/10.1371/journal.pone.0181088.g003
Waterbucks selected patches located far from other sightings (>163 m) and those close to water (<742 m) whilst the other four predictors were below the logistic threshold (Fig 4).
[Figure omitted. See PDF.]
Fig 4. The response of waterbuck to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance from settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency.
Dotted lines represent the logistic threshold of equal training sensitivity and specificity.
https://doi.org/10.1371/journal.pone.0181088.g004
Wildebeest selected patches located far from water (>14 km) and also farther from other animal sightings but the other four predictor variables were below the logistic threshold (Fig 5).
[Figure omitted. See PDF.]
Fig 5. The response of wildebeest to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance from settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency.
Dotted lines represent the logistic threshold of equal training sensitivity and specificity.
https://doi.org/10.1371/journal.pone.0181088.g005
Zebras selected patches of high SAVI (>0.263), close to roads (<79 m), far from other sightings (>44.23 m) and also those patches of high fire frequency (>13 fires) whereas distance from settlements and distance from water were found to be below the logistic threshold (Fig 6).
[Figure omitted. See PDF.]
Fig 6. The response of zebra to (a) Soil Adjusted Vegetation Index (SAVI), (b) distance from roads, (c) distance from settlements, (d) distance from water, (e) distance from nearest sighting and (f) fire frequency.
Dotted lines represent the logistic threshold of equal training sensitivity and specificity.
https://doi.org/10.1371/journal.pone.0181088.g006
Discussion
We observed that interference competition (estimated by distance from the nearest animal sighting) explained the distribution of the target species better than forage (SAVI), interference from humans (distance from roads and settlements), distance from water and fire frequency. However, in tandem with past literature [29, 30], distance from water sources and distance from settlements were also important predictors of grazer distribution. SAVI was generally found to be the least important predictor.
These findings imply that using SDMs to predict the distribution of grazers without competition as a predictor may be inadequate. Our use of distance from the nearest sighting as a proxy for competition among grazer species for inclusion in SDM provides an important first step towards better characterisation of herbivore competition. Previous characterization of competition has largely been restricted to field based observations that are limited in both space and time [31, 32].
Results from the response curves consistently showed that all the target species avoided patches that are located near other animal species. In particular, peak probabilities of presence for the modelled species were observed at distances generally more than 500 m away from the next sighting. It could therefore be inferred that the patches located further away from other species are associated with less interference competition for resources such as forage and water. However, the effect of competition on the potential distribution of warthog and waterbuck was second best. For the warthog, distance from the nearest settlement was the most important predictor whilst for the waterbuck, distance from the nearest water source was the most important. While selection of patches close to settlements by warthogs is surprising, selection of patches close to water by the waterbuck could be explained by the fact that the antelope is largely water dependent [33, 34].
The major strength of our study lies in the inclusion of distance from the nearest sighting (a proxy for competition) with other traditional predictor variables to model the potential distribution of selected grazers. To the best of our knowledge competition is a missing variable in SDMs. Results from our study therefore provide impetus to explore newer approaches for characterizing competition in ecosystems. To date characterizing competition has been limited to point measurements. Our findings are also reliable because modelling was based on presence data from five different species, thus suggesting that the reported importance of competition is a consistent pattern rather than a product of chance. However, a possible limitation of our analyses is that, the way we estimated competition might not be the best since wildlife aerial surveys are sample estimates and therefore miss some animals in the landscape. In addition, results from our study give a snapshot of the predicted distribution of the study species during the time of sampling and as such cannot be easily used to represent their distribution at all times of the year.
Conclusion
In this study we provided evidence for the importance of competition as a predictor for the geographic distribution of grazing ungulates. Our findings suggest that SDMs that exclude competition as a predictor variable might be inadequate in explaining the potential distribution of species in ecosystems. We therefore propose the inclusion of competition in SDMs.
Acknowledgments
We are grateful to the Frankfurt Zoological Society, Zimbabwe Parks and Wildlife Management Authority as well as the Gonarezhou Conservation Trust for allowing us to use the 2013 aerial survey data for this study.
Citation: Mpakairi KS, Ndaimani H, Tagwireyi P, Gara TW, Zvidzai M, Madhlamoto D (2017) Missing in action: Species competition is a neglected predictor variable in species distribution modelling. PLoS ONE 12(7): e0181088. https://doi.org/10.1371/journal.pone.0181088
1. Tilman D. Resource competition and community structure. New Jersey, UK: Princeton University Press; 1982.
2. Welborn GA, Skelly DK, Werner EE. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics. 1996:337–63.
3. Keesing F, Young TP. Cascading consequences of the loss of large mammals in an African savanna. Bioscience. 2014;64(6):487–95.
4. Ashraf N, Anwar M, Hussain I, Nawaz MA. Competition for food between the markhor and domestic goat in Chitral, Pakistan. Turkish Journal of Zoology. 2014;38(2):191–8.
5. Ogutu JO, Reid RS, Piepho H-P, Hobbs NT, Rainy ME, Kruska RL, et al. Large herbivore responses to surface water and land use in an East African savanna: implications for conservation and human-wildlife conflicts. Biodiversity and Conservation. 2014;23(3):573–96.
6. Ferry N, Dray S, Fritz H, Valeix M. Interspecific interference competition at the resource patch scale: do large herbivores spatially avoid elephants while accessing water? Journal of Animal Ecology. 2016;85(6):1574–85. pmid:27495127
7. Yodzis P. Competition for space and the structure of ecological communities. Berlin, Germany: Springer Science & Business Media; 2013.
8. Buchmann CM, Schurr FM, Nathan R, Jeltsch F. Habitat loss and fragmentation affecting mammal and bird communities—The role of interspecific competition and individual space use. Ecological Informatics. 2013;14:90–8.
9. Rettelbach A, Kopp M, Dieckmann U, Hermisson J. Three modes of adaptive speciation in spatially structured populations. The American Naturalist. 2013;182(6):215–34.
10. Ndaimani H, Tagwireyi P, Sebele L, Madzikanda H. An ecological paradox: the African wild dog (Lycaon pictus) is not attracted to water points when water is scarce in Hwange National Park, Zimbabwe. Plos One. 2016;11(1). pmid:26816321
11. de Melo França L, de Asevedo L, Dantas MAT, Bocchiglieri A, dos Santos Avilla L, Lopes RP, et al. Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation. Earth-Science Reviews. 2015;140:158–65.
12. Debeffe L, Morellet N, Cargnelutti B, Lourtet B, Bon R, Gaillard JM, et al. Condition-dependent natal dispersal in a large herbivore: heavier animals show a greater propensity to disperse and travel further. Journal of Animal Ecology. 2012;81(6): 1327–1327. pmid:22844997
13. Wiens JA. The ecology of bird communities. Cambridge: Cambridge University Press; 1992.
14. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006;190(3):231–59.
15. Rinne H, Kaskela A, Downie A-L, Tolvanen H, von Numers M, Mattila J. Predicting the occurrence of rocky reefs in a heterogeneous archipelago area with limited data. Estuarine, Coastal and Shelf Science. 2014;138:90–100.
16. Pays O, Blanchard P, Valeix M, Chamaillé-Jammes S, Duncan P, Périquet S, et al. Detecting predators and locating competitors while foraging: an experimental study of a medium-sized herbivore in an African savanna. Oecologia. 2012;169(2):419–30. pmid:22200851
17. Périquet S, Valeix M, Claypole J, Drouet-Hoguet N, Salnicki J, Mudimba S, et al. Spotted hyaenas switch their foraging strategy as a response to changes in intraguild interactions with lions. Journal of Zoology. 2015;297(4):245–54.
18. Thuiller W, Georges D, Engler R, Breiner F, Georges MD, Thuiller CW. Package ‘biomod2’. 2016.
19. Dunham K, van der Westhuizen E, van der Westhuizen H, Ndaimani H. Aerial survey of elephants and other large herbivores in Gonarezhou National Park (Zimbabwe), and surrounding areas: 2013. Zimbabwe Parks and wildlife Management Authority. 2013.
20. Gandiwa E, Kativu S. Influence of fire frequency on Colophospermum mopane and Combretum apiculatum woodland structure and composition in northern Gonarezhou National Park, Zimbabwe. Koedoe. 2009;51(1):1–13.
21. Norton-Griffiths M. Counting animals. Handbooks on techniques currently used in African wildlife ecology. African Wildlife Leadership Foundation, Nairobi. 1978.
22. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36(1):27–46.
23. Purevdorj T, Tateishi R, Ishiyama T, Honda Y. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing. 1998;19(18):3519–35.
24. ESRI. ArcGIS Desktop 10.1. Redlands, CA: Environmental Systems Research Institute; 2012.
25. Krausman PR, Etchberger RC. Response of desert ungulates to a water project in Arizona. The Journal of Wildlife Management. 1995:292–300.
26. Huang S, Li J, Xu M. Water surface variations monitoring and flood hazard analysis in Dongting Lake area using long-term Terra/MODIS data time series. Natural Hazards. 2012;62(1):93–100.
27. Cione NK, Padgett PE, Allen EB. Restoration of a native shrubland impacted by exotic grasses, frequent fire, and nitrogen deposition in southern California. Restoration Ecology. 2002;10(2):376–84.
28. Panczykowski DM, Puccio AM, Scruggs BJ, Bauer JS, Hricik AJ, Beers SR, et al. Prospective independent validation of IMPACT modeling as a prognostic tool in severe traumatic brain injury. Journal of Neurotrauma. 2012;29(1):47–52. pmid:21933014
29. Chamaille James S, Valeix M, Fritz H. Managing heterogeneity in elephant distribution: interactions between elephant population density and surface-water availability. Journal of Applied Ecology. 2007;44(3):625–33.
30. Bailey DW, Gross JE, Laca EA, Rittenhouse LR, Coughenour MB, Swift DM, et al. Mechanisms that result in large herbivore grazing distribution patterns. Journal of Range Management. 1996;49(5):386–400.
31. Odadi WO, Karachi MK, Abdulrazak SA, Young TP. African wild ungulates compete with or facilitate cattle depending on season. Science. 2011;333(6050):1753–5. pmid:21940896
32. Sinclair AR. Does interspecific competition or predation shape the African ungulate community? The Journal of Animal Ecology. 1985:899–918.
33. Taylor C, Spinage C, Lyman C. Water relations of the waterbuck, an East African antelope. American Journal of Physiology—Legacy Content. 1969;217(2):630–4.
34. Redfern JV, Grant R, Biggs H, Getz WM. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology. 2003;84(8):2092–107.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2017 Mpakairi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
The central role of species competition in shaping community structure in ecosystems is well appreciated amongst ecologists. However species competition is a consistently missing variable in Species Distribution Modelling (SDM). This study presents results of our attempt to incorporate species competition in SDMs. We used a suit of predictor variables including Soil Adjusted Vegetation Index (SAVI), as well as distance from roads, settlements and water, fire frequency and distance from the nearest herbivore sighting (of selected herbivores) to model individual habitat preferences of five grazer species (buffalo, warthog, waterbuck, wildebeest and zebra) with the Ensemble SDM algorithm for Gonarezhou National Park, Zimbabwe. Our results showed that distance from the nearest animal sighting (a proxy for competition among grazers) was the best predictor of the potential distribution of buffalo, wildebeest and zebra but the second best predictor for warthog and waterbuck. Our findings provide evidence to that competition is an important predictor of grazer species’ potential distribution. These findings suggest that species distribution modelling that neglects species competition may be inadequate in explaining the potential distribution of species. Therefore our findings encourage the inclusion of competition in SDM as well as potentially igniting discussions that may lead to improving the predictive power of future SDM efforts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer