Full Text

Turn on search term navigation

© 2017 Pullicin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Studies have reported that some animals, including humans, can taste mixtures of glucose oligomers (i.e., maltooligosaccharides, MOS) and that their detection is independent of the known T1R2/T1R3 sweet taste receptor. In an effort to understand potential mechanisms underlying the taste perception of glucose oligomers in humans, this study was designed to investigate: 1) the variability of taste sensitivity to MOS with low degree-of-polymerization (DP), and 2) the potential role of hT1R2/T1R3 in the MOS taste detection. To address these objectives, a series of food grade, narrow-DP-range MOS were first prepared (DP 3, 3–4, 5–6, and 6–7) by fractionating disperse saccharide mixtures. Subjects were then asked to discriminate these MOS stimuli as well as glucose (DP 1) and maltose (DP 2) from blanks after the stimuli were swabbed on the tongue. All stimuli were presented at 75 mM with and without a sweet taste inhibitor (lactisole). An α-glucosidase inhibitor (acarbose) was added to all test stimuli to prevent oral digestion of glucose oligomers. Results showed that all six stimuli were detected with similar discriminability in normal tasting conditions. When the sweet receptor was inhibited, DP 1, 2, and 3 were not discriminated from blanks. In contrast, three higher-DP paired MOS stimuli (DP 3–4, 5–6, and 6–7) were discriminated from blanks at a similar degree. Overall, these results support the presence of a sweet-independent taste perception mechanism that is stimulated by MOS greater than three units.

Details

Title
Human taste detection of glucose oligomers with low degree of polymerization
Author
Pullicin, Alexa J; Penner, Michael H; Lim, Juyun
First page
e0183008
Section
Research Article
Publication year
2017
Publication date
Aug 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1933639313
Copyright
© 2017 Pullicin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.