Content area
Full Text
Received Apr 6, 2017; Revised Jul 7, 2017; Accepted Jul 19, 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Before getting into orbit and carrying out the normal work, spacecraft should undergo rigorous prelaunch environment. As we know, large level mechanical vibration connected with noise field and structural vibration will be generated during the launch process of rocket, and strong acceleration and severe noise will be accompanied during the ascending period of rocket. Furthermore, intensive mechanical shock will be caused by the satellite-vehicle separation and the operation of initiating explosive device and release mechanism, such as the deployment of solar arrays. Such vibration and shock loads will directly transfer to the spacecraft through the structure and hence bring a potential risk of damage of critical components or structures on spacecraft and accuracy reduction and functional degeneration of spacecraft system or payloads [1, 2]. Therefore, adopting efficient structural vibration control skills to make sure the spacecraft can withstand the rigorous mechanical environment experiences, such as acceleration, noise, vibration, and shock in the boost phase of carrier rocket, is always an inevitable and close concerned problem in the field of aerospace engineering.
In recent two decades, with the development of multichip module technology, high performance composite material technology, flexible circuit connection technology, and advanced thermal control technology, the spacecraft multifunctional structure technology breaks away from cocoon and gets rapid development [3–6]. Such technology organically combines the functions of data processing, radiation protection, thermal control, electric power storage, and so on as a whole and achieves an integrated design of structure, function, and material, which can eliminate the redundant mass and volume of traditional satellite, improve the available free space and payload mass ratio of satellite, shorten the time period of satellite design and fabrication substantially, and extend the life of satellite effectively. Up to date, several researchers have developed such multifunctional structure technology, prompted a series of fundamental researches, and conducted...